说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 基本固有振型
1)  fundamental natural mode of vibration
基本固有振型
2)  natural mode shape
固有振型
3)  natural mode
固有振型
1.
The transfer matrix method, which is usually used in solving the problems of natural frequencies and natural modes in engineering,is also used in the present paper to find the solution to the transverse free vibration of continuous equispan beams on elastic springs.
利用工程中求解固有频率和固有振型的常用方法,对弹性点支连续等跨梁在冲击载荷作用下的横向自由振动问题进行了求解,得到了固有频率和固有振型。
4)  basic vibration mode
基本振型
1.
According to the static deformation behavior of piers sited on elastic foundation,the piers basic vibration mode of continuous beam bridge was put forward,the mode included the elastic deformation only caused by force and the deformations derived from the foundation s rotation and translation.
根据位于弹性地基基础上连续梁的变形特性,假设桥墩的基本振型函数由自身变形、基础转动和平动引起的变形3部分组成。
5)  dominant mode
基本振荡型
6)  natural frequency andmode shape
固有频率与振型
补充资料:振型


振型
Mode of vibration

  振型(mode of vibration) 振型是指振动的特征方式。在自由振动系统中,振动是在特定的频率以某些特征型式进行的。振动的这些特征型式称为主振型。 举例说,理想弦能整体地按下式所定义的特征频率而振动: f~(1/ZL卜可俪不,其中乙是弦在两刚性支点间的长度,T是张力,水是弦单位长度的质量。弦上不同部分的位移由一个特征形状函数来决定。更具体地说,弦的每个部分的运动是和,in!竿卜i。〔2动)成比例,其中二是弦上棍明‘.l”一~、L)一~、一”““~卜甘v劝’~’--一J“一这个部分到一个固定端的距离,‘是时间。这种最简单的振动型式是弦的第一振型,即基本振型,它的频率则是基本频率。弦上所有各部分都以同样频率而振动,在同一瞬时由平衡位置偏离或返回。 弦也可以分两段振动,当一段由平衡位置朝正向偏离时,另一段朝反向偏离,或反过来运动。此时,弦上每个部分的运动仍可以由一个空间函数与时间正弦函数的乘积sin里竺 Lsin(4二ft)来描述。弦上所有各部分都一齐按时间的正弦函数以同一频率运动,而空间函数则决定两个按相反方向进行的运动。第二振型的频率是第一振型频率的两倍。类似地,更高阶振型具有的频率都是基本频率的整数倍。 由于诸频率是按1,2,3..·的比例,所以理想弦的诸振型都可以合适地称为谐振。但并非所有振动物体都具有谐振型。举例说,自由振动的理想鼓面的诸频率具有比值1,1. 59,2.14,2.30.二。事实上,大多数自由振动的实际系统都具有频率间不严格地按整数比的各个振型。参阅“振动”(vibration)条。 〔杨(R .w.Young)撰〕
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条