2) circulating pump
循环水泵
1.
Electrical power consumption analysis of circulating pumps in central heating systems for residential quarters;
小区集中供热系统循环水泵电耗实测分析
2.
On suitability of circulating pump and characteristic curve of heat supply network;
热网循环水泵与管路特性曲线适应性探讨
3.
Research on saving energy & circulating pump rational match of water system of air-conditioning;
空调循环水泵合理配置与节能研究
3) water circulating pump
循环水泵
1.
Energy conservation reform of water circulating pump control system;
循环水泵供水控制系统的节能改造
2.
On economic operation of water circulating pump;
关于循环水泵经济运行的探讨
3.
Reasonable use of water circulating pump in air conditioning system in summer and winter;
关于空调水系统循环水泵夏冬季合用的探讨
4) circulating water pump
循环水泵
1.
Shaft corrosion problem for the circulating water pump and treatment;
田湾核电站循环水泵泵轴腐蚀问题及处理措施
2.
Steam Corrosion Cause of a Circulating Water Pump and Its Application;
循环水泵汽蚀的原因及改进措施
3.
Frequency converter technology reconstruction of circulating water pump for Qitaihe Electric Power Plant;
七台河电厂循环水泵变频技术改造
5) circulation pump
循环水泵
1.
Because circulation pumps are part of the auxiliary equipment,that consume much house-power,the profitability of changing the circulating pump,of Shengli Power Plant s first stage construction,to high/low dual speed control is analyzed,and this way of operation substantiated.
循环水泵是用电量较大的辅机设备,为此对胜利发电厂Ⅰ期循环水泵改为高、低速运行的经济性进行分析,论证了循环水泵改为双速控制的节能改造方案。
2.
Eight seawater circulation pumps in Jiangsu Tianwan Plant experienced serious corrosion during commissioning.
针对江苏田湾核电站1、2号1000MW、全速、单轴、八排气、中间去湿再热机组8台海水循环水泵在调试运行阶段出现比较严重的腐蚀现象,介绍了循环水泵的性能参数、腐蚀发生的区域和特征以及腐蚀发生的机理,阐述了缝隙腐蚀、点蚀和电偶腐蚀3种腐蚀形式,并分别进行了原因分析。
3.
The causes of overload of circulation pump electromotor in Dihuali substation is analyzed.
针对天津华苑地华里热力站循环泵电机过载的问题进行分析,介绍了防止循环水泵电机过载的方法。
6) circulating-water pump
循环水泵
1.
Use and improvement of hydraulic-controlled butterfly valves for circulating-water pumps of 600 MW units;
600MW机组循环水泵液控蝶阀的使用及改进
2.
Overall corrosion prevention ameliorations for circulating-water pumps in Zhanjiang Power Plant;
湛江发电厂循环水泵的腐蚀防护综合治理
3.
After switching over the circulating-water pump of 4×300 MW units in Laicheng Power Plant from high speed to low speed operation in November, 2006, it had been discovered from comparison that the condenser s vacuum of unit no.
2006年11月,莱城发电厂4×300MW机组循环水泵自高速切换低速运行后,经对比发现1号机组凝汽器真空偏低约1。
补充资料:水循环
指地球上的水连续不断地变换地理位置和物理形态(相变)的运动过程。又称水分循环或水文循环。地球上的水包括海洋中的水、大陆上的水、大气中的水及地下水等,以汽态、液态和固态形式存在。水循环可以描述为如下的图式:在太阳辐射能的作用下,从海陆表面蒸发的水分,上升到大气中;随着大气的运动和在一定的热力条件下,水汽凝结为液态水降落至地球表面;一部分降水可被植被拦截或被植物散发,降落到地面的水可以形成地表径流;渗入地下的水一部分从表层壤中流和地下径流形式进入河道,成为河川径流的一部分;贮于地下的水,一部分上升至地表供蒸发,一部分向深层渗透,在一定的条件下溢出成为不同形式的泉水;地表水和返回地面的地下水,最终都流入海洋或蒸发到大气中。(见图)
环节 水循环是多环节的自然过程,全球性的水循环涉及蒸发、大气水分输送、地表水和地下水循环以及多种形式的水量贮蓄。
蒸发是水循环中最重要的环节之一。由蒸发产生的水汽进入大气并随大气活动而运动。大气中的水汽主要来自海洋,一部分还来自大陆表面的蒸散发。大气层中水汽的循环是蒸发-凝结-降水-蒸发的周而复始的过程。海洋上空的水汽可被输送到陆地上空凝结降水,称为外来水汽降水;大陆上空的水汽直接凝结降水,称内部水汽降水。一地总降水量与外来水汽降水量的比值称该地的水分循环系数。全球的大气水分交换的周期为10天。在水循环中水汽输送是最活跃的环节之一。
中国的大气水分循环路径有太平洋、印度洋、南海、鄂霍茨克海及内陆等 5个水分循环系统。它们是中国东南、误南、华南、东北及西北内陆的水汽来源。西北内陆地区还有盛行西风和气旋东移而来的少量大西洋水汽。
陆地上(或一个流域内)发生的水循环是降水-地表和地下径流-蒸发的复杂过程。陆地上的大气降水、地表径流及地下径流之间的交换又称三水转化。流域径流是陆地水循环中最重要的现象之一。
地下水的运动主要与分子力、热力、重力及空隙性质有关,其运动是多维的。通过土壤和植被的蒸发、蒸腾向上运动成为大气水分;通过入渗向下运动可补给地下水;通过水平方向运动又可成为河湖水的一部分。地下水储量虽然很大,但却是经过长年累月甚至上千年蓄集而成的,水量交换周期很长,循环极其缓慢。地下水和地表水的相互转换是研究水量关系的主要内容之一,也是现代水资源计算的重要问题。
类型及水交换周期 水循环系统是多环节的庞大动态系统,自然界中的水是通过多种路线实现其循环和相变的。其范围可由地表向上伸展至大气对流层顶以上,地表向下可及的深度平均约1000米。全球性的水循环称为大循环,由海洋、陆地和一系列大小区域的水循环所组成。水循环按其发生的空间又可以分为海洋水循环、陆地水循环(包括内陆水循环)。因此,水循环的尺度大至全球,小至局部地区。从时间上划分,可以是长时期的平均,也可以是短时段的状况。相应的,研究水循环时,研究的区域可大至全球、某一流域,也可小至某一地域内的土壤或地下含水层内的水循环,时间也可长可短。
水循环使地球上各种形式的水以不同的周期或速度更新。水的这种循环复原特性,可以用水的交替周期表示。由于各种形式水的贮蓄形式不一致,各种水的交换周期也不一致(见表)。
研究意义 当前已经把水循环看作为一个动态有序系统。按系统分析,水循环的每一环节都是系统的组成成分,也是一个亚系统。各个亚系统之间又是以一定的关系互相联系的,这种联系是通过一系列的输入与输出实现的。例如,大气亚系统的输出──降水,会成为陆地流域亚系统的输入,陆地流域亚系统又通过其输出──径流,成为海洋亚系统的输入等。以上的水循环亚系统还可以细分为若干更次一级的系统。
水循环把水圈中的所有水体都联系在一起,它直接涉及到自然界中一系列物理的、化学的和生物的过程。水循环对于人类社会及生产活动有着重要的意义。水循环的存在,使人类赖以生存的水资源得到不断更新,成为一种再生资源,可以永久使用;使各个地区的气温、湿度等不断得到调整。此外,人类的活动也在一定的空间和一定尺度上影响着水循环。研究水循环与人类的相互作用和相互关系,对于合理开发水资源,管理水资源,并进而改造大自然具有深远的意义。
参考书目
UNESCO,World Water Balance and Water Resources of the Earth,The UNESCO Press,Paris,1978.
环节 水循环是多环节的自然过程,全球性的水循环涉及蒸发、大气水分输送、地表水和地下水循环以及多种形式的水量贮蓄。
蒸发是水循环中最重要的环节之一。由蒸发产生的水汽进入大气并随大气活动而运动。大气中的水汽主要来自海洋,一部分还来自大陆表面的蒸散发。大气层中水汽的循环是蒸发-凝结-降水-蒸发的周而复始的过程。海洋上空的水汽可被输送到陆地上空凝结降水,称为外来水汽降水;大陆上空的水汽直接凝结降水,称内部水汽降水。一地总降水量与外来水汽降水量的比值称该地的水分循环系数。全球的大气水分交换的周期为10天。在水循环中水汽输送是最活跃的环节之一。
中国的大气水分循环路径有太平洋、印度洋、南海、鄂霍茨克海及内陆等 5个水分循环系统。它们是中国东南、误南、华南、东北及西北内陆的水汽来源。西北内陆地区还有盛行西风和气旋东移而来的少量大西洋水汽。
陆地上(或一个流域内)发生的水循环是降水-地表和地下径流-蒸发的复杂过程。陆地上的大气降水、地表径流及地下径流之间的交换又称三水转化。流域径流是陆地水循环中最重要的现象之一。
地下水的运动主要与分子力、热力、重力及空隙性质有关,其运动是多维的。通过土壤和植被的蒸发、蒸腾向上运动成为大气水分;通过入渗向下运动可补给地下水;通过水平方向运动又可成为河湖水的一部分。地下水储量虽然很大,但却是经过长年累月甚至上千年蓄集而成的,水量交换周期很长,循环极其缓慢。地下水和地表水的相互转换是研究水量关系的主要内容之一,也是现代水资源计算的重要问题。
类型及水交换周期 水循环系统是多环节的庞大动态系统,自然界中的水是通过多种路线实现其循环和相变的。其范围可由地表向上伸展至大气对流层顶以上,地表向下可及的深度平均约1000米。全球性的水循环称为大循环,由海洋、陆地和一系列大小区域的水循环所组成。水循环按其发生的空间又可以分为海洋水循环、陆地水循环(包括内陆水循环)。因此,水循环的尺度大至全球,小至局部地区。从时间上划分,可以是长时期的平均,也可以是短时段的状况。相应的,研究水循环时,研究的区域可大至全球、某一流域,也可小至某一地域内的土壤或地下含水层内的水循环,时间也可长可短。
水循环使地球上各种形式的水以不同的周期或速度更新。水的这种循环复原特性,可以用水的交替周期表示。由于各种形式水的贮蓄形式不一致,各种水的交换周期也不一致(见表)。
研究意义 当前已经把水循环看作为一个动态有序系统。按系统分析,水循环的每一环节都是系统的组成成分,也是一个亚系统。各个亚系统之间又是以一定的关系互相联系的,这种联系是通过一系列的输入与输出实现的。例如,大气亚系统的输出──降水,会成为陆地流域亚系统的输入,陆地流域亚系统又通过其输出──径流,成为海洋亚系统的输入等。以上的水循环亚系统还可以细分为若干更次一级的系统。
水循环把水圈中的所有水体都联系在一起,它直接涉及到自然界中一系列物理的、化学的和生物的过程。水循环对于人类社会及生产活动有着重要的意义。水循环的存在,使人类赖以生存的水资源得到不断更新,成为一种再生资源,可以永久使用;使各个地区的气温、湿度等不断得到调整。此外,人类的活动也在一定的空间和一定尺度上影响着水循环。研究水循环与人类的相互作用和相互关系,对于合理开发水资源,管理水资源,并进而改造大自然具有深远的意义。
参考书目
UNESCO,World Water Balance and Water Resources of the Earth,The UNESCO Press,Paris,1978.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条