1) transnobelium element
超锘(No)元素
2) No
[英][nəʊ] [美][no]
102号元素锘(nobelium)的化学符
3) Nobelium
[英][nəu'beliəm] [美][no'bɛlɪəm]
锘
4) super heavy element
超重元素
1.
With the synthesis of heavy elements approaching the super heavy island,the production cross section becomes smaller and the lifetime of the super heavy element becomes longer,which results in the difficulties for identification of the elements by using conventional alpha decay chain technique.
随着合成的超重元素向超重岛逼近,合成截面越来越小,同时,合成的超重元素的寿命可能相对增长,这对利用α衰变链的传统方法鉴别超重元素是非常不利的。
5) transuranium
[,trænsju'reinjəm]
超铀元素
1.
Some restrictive factors of the limit of transuranium are discussed in this paper on the basis of philoscophical laws of the unity of opposites and the quantitative qualitative change.
以哲学的对立统一和量变质变两大基本规律为由头 ,考虑了超铀元素存在的若干限制因素 ,结论认为 :1。
2.
Some problems are discussed in this paper which is“spale-restriction”,“time-restric- tion”and“cross-section-restriction on the transuranium s limit”.
本文讨论了超铀元素存在的“空间限制”、“时间限制”和“生成截面限制”。
3.
The boundary limit of the periodic system is also one of the transuraniums.
作者认为超铀元素存在的界限(或极限)大体在Z=110-125号元素,而Z=114-120号元素将更有可能。
6) superheavy element
超重元素
1.
The α-decay lifetimes of the newly synthesized superheavy elements are calculated using the α-cluster model and the results are in good agreement with experimental data.
用α 结团模型计算新合成超重元素的半衰期 ,与已知的实验数据进行对比分析 ,发现理论和实验数据能够很好地符合 ,验证了α 结团模型对超重核研究的有效性 。
2.
The status and development of the studies on reaction mechanism for synthesis of superheavy elements has been reviewed.
回顾了超重元素研究的现状和超重元素合成反应机制研究的发展,指出目前超重元素合成研究中存在的困难和对超重余核鉴别的一些设想。
3.
This report introduces and analyzes the progress of the theoretical and experimental studies for the synthesis of superheavy element and nuclide in the world and our country.
本文在介绍和分析国际、国内在超重元素 (新核素 )合成实验研究与理论研究进展情况的基础上对我国今后如何从理论与实验的结合上开展超重元素 (核 )合成研究工作提出一些看法和建议 ,提供讨
补充资料:锕系元素环境化学
研究锕系元素在环境中的化学行为的科学,是锕系元素化学的分支学科。
锕系元素环境化学是在核能获得越来越大规模的应用、人类对环境质量日益关心的情况下逐渐发展起来的。20世纪70年代以来,核能的发展迫切需要解决如何长期安全地处置放射性废物的问题。放射性废物对于环境可能造成的长期危害主要来自其中的长寿命锕系元素。为了评价放射性废物对环境的影响,给放射性废物的安全处置提供科学依据,不仅需要通过现场环境的调查来了解锕系元素迁移分布的情况,而且需要深入地、系统地研究它们在环境中的化学行为,阐明这种迁移分布的原因和机理。锕系元素化学与环境科学的相互交叉和渗透,产生了锕系元素环境化学这门新兴的边缘学科。
锕系元素环境化学既包括在宏观方面对锕系元素在环境中的来源和迁移分布的调查和分析,又包括在微观方面对于锕系元素在环境中的化学状态、存在形式以及它们与环境中其他物质的化学反应机理的研究,并在此基础上建立描述锕系元素在环境中的化学运动规律的模型。此外,如何将化学热力学和动力学的理论应用于开放性的、多因素的环境体系,也是锕系元素环境化学的研究课题。
环境中的锕系元素浓度极低,一般在 10-15摩/升或者更低的水平。研究在极低浓度下化学反应的历程,是锕系元素环境化学的重要课题。此外,与通常水溶液化学研究所选取的酸性介质、碱性介质不同,环境介质往往是近中性的。在这样的介质中,锕系元素具有较强烈的水解和聚合的倾向,而且这种倾向又因氧化态不同而有差别,再加上它们与环境物质的氧化还原、络合和吸附等作用,构成了一个错综复杂的体系。为了适应宏观调查的要求,需要建立适合环境体系的分析方法,这些方法既要有高灵敏度,又不能对环境产生扰动而改变所分析的锕系元素的化学状态。还必须充分发挥实验室研究的重要作用,利用环境模型来简化环境中发生的过程,突出决定锕系元素环境化学行为的主要因素。此外,还应当认识真实环境与环境模型的区别和关系,从而正确地运用实验室研究的结果去解释和推测锕系元素的环境化学行为,为制定放射性废物最终处置方案提供重要的科学依据。
锕系元素环境化学是在核能获得越来越大规模的应用、人类对环境质量日益关心的情况下逐渐发展起来的。20世纪70年代以来,核能的发展迫切需要解决如何长期安全地处置放射性废物的问题。放射性废物对于环境可能造成的长期危害主要来自其中的长寿命锕系元素。为了评价放射性废物对环境的影响,给放射性废物的安全处置提供科学依据,不仅需要通过现场环境的调查来了解锕系元素迁移分布的情况,而且需要深入地、系统地研究它们在环境中的化学行为,阐明这种迁移分布的原因和机理。锕系元素化学与环境科学的相互交叉和渗透,产生了锕系元素环境化学这门新兴的边缘学科。
锕系元素环境化学既包括在宏观方面对锕系元素在环境中的来源和迁移分布的调查和分析,又包括在微观方面对于锕系元素在环境中的化学状态、存在形式以及它们与环境中其他物质的化学反应机理的研究,并在此基础上建立描述锕系元素在环境中的化学运动规律的模型。此外,如何将化学热力学和动力学的理论应用于开放性的、多因素的环境体系,也是锕系元素环境化学的研究课题。
环境中的锕系元素浓度极低,一般在 10-15摩/升或者更低的水平。研究在极低浓度下化学反应的历程,是锕系元素环境化学的重要课题。此外,与通常水溶液化学研究所选取的酸性介质、碱性介质不同,环境介质往往是近中性的。在这样的介质中,锕系元素具有较强烈的水解和聚合的倾向,而且这种倾向又因氧化态不同而有差别,再加上它们与环境物质的氧化还原、络合和吸附等作用,构成了一个错综复杂的体系。为了适应宏观调查的要求,需要建立适合环境体系的分析方法,这些方法既要有高灵敏度,又不能对环境产生扰动而改变所分析的锕系元素的化学状态。还必须充分发挥实验室研究的重要作用,利用环境模型来简化环境中发生的过程,突出决定锕系元素环境化学行为的主要因素。此外,还应当认识真实环境与环境模型的区别和关系,从而正确地运用实验室研究的结果去解释和推测锕系元素的环境化学行为,为制定放射性废物最终处置方案提供重要的科学依据。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条