1) thermal transmittance
热传递,热传导;透热率
2) thermal conductivity
热传导率
1.
The thermal conductivity exhibited a sigmoid curve against composition.
Mo/PSZ系复合材科的热传导率、变形及破坏举动等特性不仅与测定温度和组成有关、而且强烈依存于复合材料的组织特征。
3) Heat conductivity
热传导率
1.
The 12-species 17-steps model and the second-moment turbulent combustion model were used,and the heat conductivity of laminar sub-layer on surface of grain was calculated to achieve the fuel regression rate.
采用12组分1、7个化学反应的模型和二阶矩湍流燃烧模型,通过计算药柱表面热传导率,得到了燃面退移速率,对固体燃料冲压发动机燃烧室内部的燃烧流动进行了数值模拟,分析了空气流量、空气总温和入口直径对燃烧室温度分布、C4H6分布和燃面退移速率的影响。
5) heat transfer
传热,热传递
6) heat transference
热传递,传热
补充资料:热传递
改变系统内能的两种方式之一,另一种方式为作功。在没有作功而只有温度差的条件下,能量从一个物体转移到另一个物体,或从物体的一部分转移到另一部分的过程称为热传递。在热传递过程中,一般用热量来量度内能改变的多少。热传递又分为热对流、热传导、热辐射。实际上,这三种传热方式常常同时并存,因而,增加了过程的复杂性。对于固体热源,当它同周围媒质温度差不很大时(约50°C以下),热源向周围媒质传递的热量Q可由牛顿冷却定律:
来计算,其中s为进行热量交换的表面积且在s上热量交换是均匀的,θ是固体的温度,θo是远离热源处的媒质温度,t是进行热交换的时间,α是表面热传递系数。
热对流 流体依靠其宏观流动而实现的热传递过程称为热对流。其特点是,在热量传递的同时,伴随着大量分子的定向运动。热对流又分为自然对流和强迫对流。
①自然对流。当流体内部存在温度梯度,进而出现密度梯度时,高温处流体的密度一般小于低温处流体的密度(水在0~4°C的反常膨胀等除外)。如果密度由小到大对应于它们在空间的位置是由低到高,则受重力作用,流体便开始流动。又由于高温处分子无规则运动的平均动能较低温处大,从而出现了热量由高温处传向低温处的现象。冬天室内的取暖设备就是借助室内空气的自然对流来传热的。大气及海洋中也存在着这种热对流现象。
②强迫对流。靠外来作用使流体作循环流动,从而进行热量传递。
热传导 不借助于物质的宏观移动,而靠分子、原子、电子等间的相互作用使热量由高温物体传向低温物体(或由物体的高温部分传向低温部分)的宏观过程称为热传导。气、液、固三态物体中都能发生这种传热过程。
根据傅里叶实验定律,在dt时间内流过面积元ds的热量为
式中负号表示热量沿温度减小的方向传递,表示ds所在处沿ds法线方向的温度梯度, λ(x,y,z)称为物体在(x,y,z)处的热导率,其值决定于物质的导热性能。
热辐射 借助电磁波传递能量的方式称为热辐射。它具有连续的辐射能谱,波长自远红外区延伸至紫外区,但主要靠波长较长的红外线。辐射源表面在单位时间内、单位面积上所发射(或吸收)的能量同该表面的性质及温度有关,表面越黑暗越粗糙,发射(吸收)能量的能力就越强。
不同物体对同样电磁波的吸收、穿透和反射的程度各不相同。物体吸收的辐射能同射到物体上的总辐射能之比a称为吸收系数;反射的部分同总辐射能之比r称为反射系数;穿透部分同总辐射能之比t称为穿透系数。三者间有下列关系a+r+t=1。
当t=1时,a=r=0,称为理想透射体;
当r=1时,a=t=0,称为理想反射体;
当a=1时,t=r=0,称为理想黑体。
一个物体向外辐射能量的同时,还吸收从其他物体辐射来的能量。如果物体辐射出去的能量恰好等于在同一时间内所吸收的能量,则辐射过程达到平衡,称为平衡辐射,此时物体具有固定的温度(见普朗克公式)。
参考书目
霍尔曼著,马庆芳等译:《传热学》,人民教育出版社,北京,1979。(J. P. Holman, Heat Transfer, 4th ed., McGraw Hill, New York, 1976.)
杨世铭主编:《传热学》,人民教育出版社,北京,1980。
来计算,其中s为进行热量交换的表面积且在s上热量交换是均匀的,θ是固体的温度,θo是远离热源处的媒质温度,t是进行热交换的时间,α是表面热传递系数。
热对流 流体依靠其宏观流动而实现的热传递过程称为热对流。其特点是,在热量传递的同时,伴随着大量分子的定向运动。热对流又分为自然对流和强迫对流。
①自然对流。当流体内部存在温度梯度,进而出现密度梯度时,高温处流体的密度一般小于低温处流体的密度(水在0~4°C的反常膨胀等除外)。如果密度由小到大对应于它们在空间的位置是由低到高,则受重力作用,流体便开始流动。又由于高温处分子无规则运动的平均动能较低温处大,从而出现了热量由高温处传向低温处的现象。冬天室内的取暖设备就是借助室内空气的自然对流来传热的。大气及海洋中也存在着这种热对流现象。
②强迫对流。靠外来作用使流体作循环流动,从而进行热量传递。
热传导 不借助于物质的宏观移动,而靠分子、原子、电子等间的相互作用使热量由高温物体传向低温物体(或由物体的高温部分传向低温部分)的宏观过程称为热传导。气、液、固三态物体中都能发生这种传热过程。
根据傅里叶实验定律,在dt时间内流过面积元ds的热量为
式中负号表示热量沿温度减小的方向传递,表示ds所在处沿ds法线方向的温度梯度, λ(x,y,z)称为物体在(x,y,z)处的热导率,其值决定于物质的导热性能。
热辐射 借助电磁波传递能量的方式称为热辐射。它具有连续的辐射能谱,波长自远红外区延伸至紫外区,但主要靠波长较长的红外线。辐射源表面在单位时间内、单位面积上所发射(或吸收)的能量同该表面的性质及温度有关,表面越黑暗越粗糙,发射(吸收)能量的能力就越强。
不同物体对同样电磁波的吸收、穿透和反射的程度各不相同。物体吸收的辐射能同射到物体上的总辐射能之比a称为吸收系数;反射的部分同总辐射能之比r称为反射系数;穿透部分同总辐射能之比t称为穿透系数。三者间有下列关系a+r+t=1。
当t=1时,a=r=0,称为理想透射体;
当r=1时,a=t=0,称为理想反射体;
当a=1时,t=r=0,称为理想黑体。
一个物体向外辐射能量的同时,还吸收从其他物体辐射来的能量。如果物体辐射出去的能量恰好等于在同一时间内所吸收的能量,则辐射过程达到平衡,称为平衡辐射,此时物体具有固定的温度(见普朗克公式)。
参考书目
霍尔曼著,马庆芳等译:《传热学》,人民教育出版社,北京,1979。(J. P. Holman, Heat Transfer, 4th ed., McGraw Hill, New York, 1976.)
杨世铭主编:《传热学》,人民教育出版社,北京,1980。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条