1) source of heat release
散热源
2) discrete heat sources
离散热源
1.
The conjugated convection-conduction heat transfer from a vertical steel plate with discrete heat sources simulating the heating pipes of the wrapped-type heat exchanger is investigated experimentally and numerically.
通过离散热源模拟板管式换热器的盘管,对竖直钢平板自然对流和导热的耦合传热进行了实验研究。
2.
Heat convection in the two-dimensional rectangle enclosure with asymmetric discrete heat sources are investigated numerically, and drew the conclusions that there are three ways to break off the linkage between the strong and the weak heat source, which are adding adiabatic partition in the enclosure, setting the cold air curtain and adopting cold air impinging jet.
对含有非对称离散热源的二维矩形方腔的对流传热进行数值模拟,得出以下三种方式可以切断强热源对弱热源影响的结论,即在腔体中加入绝热隔板、设置冷空气幕和通入冷空气的冲击射流,因而能够实现室内的非对称热环境。
3.
In this paper the natural convective heat transfer in a rectangle cavity was discussed and the cavity has five discrete heat sources on the vertical wall.
本文对顶部散热的矩形空腔内某一竖侧壁上存在有 5个离散热源时的自然对流换热问题求出了数值解。
3) dispersiveness of heat source
热源分散性
4) discrete heat/pollutant sources
离散热源/污染源
5) dispersion of multi-heat source
多热源的分散性
6) discrete flush mounted heat sources
分散平齐热源
1.
The enthalpy method is applied to simulate the melting heat transfer in an enclosure with three discrete flush mounted heat sources on one of its vertical walls while the others are insulated.
利用焓法求解了矩形空腔内有3个分散平齐热源的熔化问题,考虑并分析了加热功率和过冷度对熔化界面形状和热源表面温度的影响,并把计算结果与前人的实验结果进行了比较,它们符合得比较好。
2.
The numerical simulation of melting heat transfer in an enclosure with three discrete flush mounted heat sources on one of its vertical walls and all the other walls insulted is studied by means of the enthalpy method.
利用焓法求解了有三个分散平齐热源的矩形空腔内的熔化问题,并把计算结果、实验结果和前人的计算结果进行了比较。
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条