1) random reactivity
随机反应性
2) elastoplastic random response
弹塑性随机反应
3) random reactivity function
随机反应性函数
5) random response
随机反应
1.
According to the characteristics of probability and statistics of seismic action,random response of shear type high-layer structures in combined action of horizontal and rocking ground motions was discussed.
根据地震作用的概率统计特征,研究剪切型高层结构在地震动的水平与摇摆分量联合作用下的随机反应。
2.
This paper presents the analytical formulas of random responses of systems with finite free degrees under multisupport interference by applying the theory of random vibration and space- interrelated ground motion model.
本文应用随机振动理论和地面运动的空间相关模型,给出了大跨度体系多支承干扰的随机反应分析公式。
3.
This paper presents the analytical formulas of random responses of systems with finite free degrees under multisupport interference by applying the theory of random vibration and space-interrelated ground motion model.
本文应用随机振动理论和地面运动的空间相关模型,给出了有限自由度体系多支承干扰的随机反应分析公式。
6) stochastic response
随机反应
1.
The Nonlinear seismic reliability of reinforced concrete structures was investigated using an earthquake ground motion model and a structural analysis model properly selected and the stochastic seismic response of the structures was analysed to gain statistics on stochastic response of structure.
对钢筋混凝土结构的非线性地震可靠性进行了分析研究 在合理选择地震地面运动模型和结构分析模型的基础上 ,对结构进行了随机地震反应分析 ,并获得了结构随机反应的统计量 。
2.
The earthquake ground motion model and the structural analysis model are set up, the stochastic seismic response analysis of structure is performed, and the statistics of stochastic response of structure are gained.
建立了地震地面运动模型和结构分析模型,对结构进行了随机地震反应分析,并获得了结构随机反应的统计量。
3.
This paper analyses the space-intenttelated earthquake model given in leference[1], anddeduas the stochastic response formulas of structres under this model.
本文对文献[1]的空间相关地震模型进行了分析,并推导了在这个模型下多支撑结构随机反应分析的公式。
补充资料:弹—塑性变分原理
弹—塑性变分原理
elastic-plastic variational principle
tan一suxing bionfen yuanll弹一塑性变分原理(elastie一plastic variation-al Principle)适于弹一塑性材料的能量泛函的极值理论。包括最小势能原理和最小余能原理。塑性加工力学中常用最小势能原理。变形力学问题的能量解法和有限元解法都基于最小势能原理。最小势能原理有全量理论最小势能原理和增量理论最小势能原理。 全量理论最小势能原理在极值路径(应变比能取极值的路径)下运动许可的位移场u‘中,真实的位移和应变使所对应的总势能取最小,即总势能泛涵巾取最小值,其表达式为”一0,’一万〔A(一,一关一〕dV一好多!一‘“ (l)式中“:为位移;户:为外力已知面上的单位表面力;关为体力;A(气)为应变比能。 A(勒)随材料的模型而异。对应变硬化材料(图a), E严_‘_‘_ A(乓r)一二丁二一气助+{刃(r)dr(2) 6(1一2刃~一“‘J一、-一、- 0式中E,,分别为弹性模量和泊松比;艺一硫瓜,r一掩不万,,,f,一,一音。魔。,,一,一,一音。*。!,;。f,为克罗内克(L.Kroneeker)记号,i=夕时a,一l,i笋少时民,一。,把式(2)代入式(1)便得到卡恰诺夫(几·M·Ka、aHoe)原理x的表达式。i厂:八 I’—几 I’一 ab 乞一乏(r)关系图 a一应变硬化材料;占~理想塑性材料 对于理想塑性材料(图b), 艺~ZGr(r
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条