1) non-primitive code
非本原码,非原始码
2) non-primitive turbo codes
非本原turbo码
3) nonprimitive BCH code
非本原BCH码
4) Non-primitive Convolutional Code
非本原卷积码
5) primary code
原始密码
6) imprimitive
[im'primitiv]
非本原的,非原始的
补充资料:非本原群
非本原群
imprimhive group
非本原群[加p血‘“ve gn川p;删即“翩础。四印yn"aj 集合S到自身的一一对应〔置换(声mlutation))的群,使S能划分成一组无交子集S,,‘”,S二(m)2)的并,满足下列性质:至少一个子集S‘中元素数大于l;对任何置换g〔G及任何i,l‘诬‘水,存在了,1毛z‘m,使得夕把S,映满S,· 子集S、,…,S。的集合称为非本原性系(syst已nof imP五m拓访ty),而子集S,本身称为群G的非本原性域(d0IT应ins oflmP对n五石劝妙).不是非本原置换群就称为本原(Prilnjti祀)群. 非本原群的一例为集合S上不传递的非平凡置换群G(见传递群(仃翔釜币呢goup”:可取G在S上的所有轨道(orbit)(传递性域),作为非本原性系.集合S的传递置换群G是本原的当且仅当对某元素夕任S(因此对所有元素),G中使夕不动的置换的集合是G的极大子群. 非本原置换群的概念在向量空间的线性变换群中有一个类似,即群G的线性表示(五侧坦r representa·tion)p称为非本原的(皿prim江i记),若p的表示空间能分解成一组真子空间V、,…,Vm的直和且有下列性质:对任何g〔G和任何i(1提i簇爪)都有j,l成了蕊m,使得 。(。)V‘一V,·子集Vl,…,V,的集合称为表示p的非本原性系〔sys枷of imPri而ti记ty).若v没有上述的分解,就你p为本原表示(p跪rnitive rePr巴entation)非本原表示p称为传递非本原的(七习朋itive如pri而tive),若对非本原性系中任一对子空间V.和V,都存在元素geG使得p(g)V一气.若表示p是非本原的(或本原的),则空间v的线性变换群p(G)及由表示p决定的G模V也称为非本原的(或本原的). 例域k上”维空间V中由置换基元素“:,‘’一e。决定的线性变换作成对称群S。的表示p,它是传递非本原的,一维子空间组{人。、,…,丸。。}构成p的非本原性系.传递非本原表示的另一个例子是有限群G在域k上的正则表示(化脚er rep祀senta石on);当g遍取G的元素时,一维子空间kg的集合构成非本原性系.更一般地,有限群的单项表示(曲nomjal哪正senlation)是非本原的.实平面上由旋转角为2耐水(。)3)的倍数的旋转作成机阶循环群的表示是本原表示. 非本原表示的概念与诱导表示(加duCed rep比Sen-tatlon)的概念密切相关.令p是有限群G的非本原有限维表示,{V、,…,V。}是非本原性系.集合{V、,…,V。}在由表示p决定的G的作用下分成轨道的并.设毛V,.,二,V,,}是该作用下不同轨道的代表的完全集,又设 H。={g“G:p(。)(F,,)=V j.},‘二l,’‘.,s,令中。是群H,在叭,中的表示,它是由表示p限制到H。上而确定的,又令p,是G的由甲。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条