1) linearizing
['liniəraiziŋ]
线性化的
2) degeneracy in linear programming
线性规划的退化
3) linearization of affine groups
仿射群的线性化
4) the simplification and linearization of the models
模型的简化与线性化
5) linearized absolutely dominated model
线性化的绝对优势模型
1.
To simplify computing, authors approximate their absolutely dominated model to linearized absolutely dominated model and solve this programming by software.
为了简化计算,将其近似为线性规划即线性化的绝对优势模型,并应用软件解这个规划。
6) local linearization FEM
局部线性化的有限元法
补充资料:非线性规划
非线性规划 nonlinear programming 目标函数是非线性函数或约束条件不全是线性等式(不等式)的一类数学规划。在科学管理和其他领域中,很多实际问题可以归结为线性规划,但还有另一些问题属于非线性规划。由于非线性规划含有深刻的背景和丰富的内容,已发展为运筹学的重要分支,并且在最优设计、管理科学、系统控制等领域得到越来越广泛的应用。 非线性规划的研究始于1939年,是由W.卡鲁什首次进行的,40年代后期进入系统研究,1951年H.W.库恩和A.W.塔克尔提出最优化的判别条件,从而奠定了非线性规划的理论基础,后来在理论研究和实用算法方面都有很大的发展。 非线性规划求解方法可分为无约束问题和约束问题来讨论,前者实际上就是多元函数的极值问题,是后一问题的基础。无约束问题的求解方法有最速下降法、共轭梯度法、变尺度法和鲍威尔直接法等。关于约束问题情况比较复杂,因为在迭代过程中除了要使目标函数下降外,还要考虑近似解的可行性。总的原则是设法将约束问题化为无约束问题;把非线性问题化为线性问题从而使复杂问题简单化。求解方法有可行方向法、制约函数法、简约梯度法、约束变尺度法、二次规划法和约束集法等。虽然这些方法都有较好的效果,但是尚未找到可以用于解决所有非线性规划的统一算法。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条