说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 理想环流
1)  ideal circulation
理想环流
2)  principal ideal ring
主理想环
1.
Chinese remainder theorem in principal ideal ring;
主理想环上的中国剩余定理
3)  ideal environment
理想环境
4)  ideal cycle
理想循环
1.
In this paper,a new concept of heat pump ideal cycle is put forward which may be used as the common standard for comparing heat pump dryers with different structures.
本文采用设定理想循环的方法,对不同结构的热泵干燥装置建立理想循环SM ER方程,并以此为基准对典型结构的热泵干燥装置进行了比较分析,为构建先进结构的热泵干燥装置提供了指导。
5)  environmental ideals
环境理想
1.
It is of important theoretical value and practical significance to analyze the search of the environmental ideals of the combination of human and nature, with the Chinese traditional architectural aesthetics of the circumstances, and to analyze the chase of the environmental pattern of the souls and the opinion of environmental intent.
分析中国传统建筑环境美学观对天人合一的环境理想的追求、对五位四灵的环境模式的奉行以及对体宜因借的环境意向的主张 ,具有重要的理论价值和实践意义。
6)  principal ideal domain
主理想环
1.
This paper considers the moment problem for modules over principal ideal domain containing existence and uniqueness of solution.
研究主理想环上模的矩量问题,包括矩量问题的存在性和唯一性。
2.
Let R be a principal ideal domain, V a free R -module of dimension n, W a nontrivial direct sum component of V.
设R是主理想环 ,V是n维自由R 模 ,W是V的非平凡直和因子 。
补充资料:主理想环


主理想环
principal ideal ring

  【补注】上文中的斜多项式与微分多项式环的两个例子是一般斜多项式环F{袱S,d]的特殊情形、这里S是F的自同构,d是一个S导子(s.deri姐tion)(即d(ab)二a,d(b)+d(a)b),乘法由ax二xa,+d(a)定义这个环是一个主理想环.如果S是使得尸笋F的一个同构,则此环是右主理想的,但不是左主理想的. 含有非零因子矩阵的有限矩阵环的左(和右)理想也是左(右)主理想.上面所讲的关于模的性质,对于矩阵也有(原始的)翻译,即这种环上的每个矩阵都等价于对角形矩阵. 裴定一译赵春来校主理想环〔洲.妇叫i血川d魂;rJIa明以“那幼O8劝几-u01 具有么元的结合环R(见结合环与代数(出洛。c必-tiw nll那and algebrds)),其所有的右理想与左理想都是主理想,即分别具有形式aR和Ra,a〔R.主理想环的例子有整数环,域F上的多项式环F(x),具有自同构S:F一,F的域F上的斜多项式环(nllgofskew卯l”刃m血】5)F(%,S)(F(x,S)中的元形如艺:·,.,丫a,,“,〔F,加法是通常的,乘法是由方程“x=x丫,a〔F以及结合律与分配律所定义),具有导子:F,F的域F上的微分多项式环(nng ofdif-fe耐al pol”IOm画蛇)F(、,,’)(’送下环函初。公一。、,。,,aeF的元组成,加法由通常方式给出,乘法是由方程“x二xa十a’,aoF决定).没有零因子的主理想环称为主理想整环(prillciPalj压汾1 d0lruin).交换主理想环是主理想整环与一个具有唯一幂零素理想的主理想环的直和(见幂零理想(n口po往”ti改川);素理想(p川1℃id份1)).如果R是一个主理想整环,那么R中两个非零元“和b有最大左公因子(a,b)和最小右公倍元ta,划,它们被定义为满足下列方程的元素: a只+右R二(a,吞)尺;a尺自bR二「a,b]R.元素(a,b)和ta,b]除差一个右可逆因子外是唯一确定的.主理想整环是唯一因子分解整环.一个主理想整环的全体双边理想构成一个具有零元和么元的交换乘法半群(~一grouP)(环的极大理想是这个半群的自由生成元). R上具有有限秩n的自由模M的子模N是一个秩k感n的自由模,在模M和N中可以选取基al,,、·,a。和bl,一,b*,使得b,=e,“。(l延主续k),这里e,。R,且当‘  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条