1) diverging tube
扩散管,锥形管
2) conic diffuse
锥形扩散管
1.
It will cause more back pressure for the design theory of active silencer when widening noise control frequency or enhancing noise reduction, The acoustic characteristics of a conic diffuse are analyzed in the method of mathematics and acoustic-electric Analogy A low frequency silencer with low flow-resistance is proved.
通过声电学类比和数学推导分析了锥形扩散管的声学特性,证明了其对于低频噪声有明显的抑制作用, 并几乎没有局部压力损失,可以有效地抑制气流再生噪声。
3) conical diffuser
锥形渐扩管
1.
Fully developed incompressible turbulent flow in a conical diffuser having a total divergence of 8° and an area ratio of 4 has been simulated by a DLR k-ε turbulence model and its BFC(Boundary Fit Coordinates) method.
BFC(边界拟合曲线坐标变换)法,对总扩散角为8°,扩散度为4的锥形渐扩管内充分发展的不可压粘性紊流进行数值仿真。
2.
Fully developed incompressible turbulent flow in a conical diffuser having a total divergence of 8° and an area ratio of 4 has been simulated by a DHR κ-ε turbulence model and it s wall function BFC(Boundary Fit Coordinates)approach.
BFC(边界拟合曲线坐标变换)法,对总扩散角为8°、扩散度为4的锥形渐扩管路内完全发展的不可压粘性紊流场进行了数值仿真。
3.
Fully developed incompressible turbulent flow in a conical diffuser having a total divergence of 80 and an area ratio of 4 has been simulated by DHR k-ε turbulence model and its Wall Function·BFC(Boundary Fit Coordinates)approach.
用DHR型k-ε紊流模型及其壁面函数·BFC(边界拟合曲线坐标变换)法,对总扩散角为80、扩散度为4的锥形渐扩管内充分发展的不可压粘性紊流场进行了数值仿真。
4) annular denuder
环形扩散管
1.
The gasphase polycyclic aromatic hydrocarbons(PAHs)were trapped using annular denuder coated with XAD-2 resin that was applied from a hexane slurry.
建立了环形扩散管采集环境空气中气态多环芳烃的方法,采用平行实验分别比较了不同涂渍介质和不同吸附树脂对采样效率的影响。
2.
Compared to annular denuder, the collection efficiency and capacity of honeycomb denuder were higher than annular.
研究表明 :2 %HNO3 2 %甘油对气态硒的收集效率为 99 1%和环形扩散管 (AD)相比 ,HD的收集效率和收集容量都更大。
3.
An annular denuder system(ADS), which consisted of denuder tubes striping the reactive gases from air and leaving the particles on the filters was designed.
应用环形扩散管同时采集和分离空气中气态组分和气溶胶颗粒两种状态的污染物,解决了采集过程中气体和颗粒物相互干扰问题。
5) expansion nozzle
扩散形喷管
6) conical diffuser and outlet pipe
锥形渐扩管与后接管
1.
Fully developed incompressible turbulent flow with adverse and favorable pressure gradient in a conical diffuser and outlet pipe having a total divergence of 8°and an area ratio of 4:1 has been simulated by a DHR k—εturbulence model and it s wall function·BFC (Boundary -Fitted Coordinates) approach.
用DHR型k—ε紊流模型壁面函数·BFC法(边界拟合曲线坐标变换法),对总扩散角为8°、扩散度为4的锥形渐扩管与后接管路内逆与顺压梯度完全发展的不可压粘性紊流场进行了数值仿真。
补充资料:扩散管
分子式:
CAS号:
性质:是喷射泵中使动能转换为静压能的装置。由图可见(图暂缺),管的前部作收敛状,称为混合室,喉管以后管径逐渐扩大直至出口,管壁的倾斜度约为4º~5º。操作时,则喷嘴喷射出来的工作流体与被吸入的流体在混合室混合后,经过喉管进入扩散管的扩大部分,流体的流速逐渐降低。流体静压能增加。至出口处的压力较高得以排出。工作流体可为蒸气、水或其他流体,其所吸入的流体可为液体或气体。
CAS号:
性质:是喷射泵中使动能转换为静压能的装置。由图可见(图暂缺),管的前部作收敛状,称为混合室,喉管以后管径逐渐扩大直至出口,管壁的倾斜度约为4º~5º。操作时,则喷嘴喷射出来的工作流体与被吸入的流体在混合室混合后,经过喉管进入扩散管的扩大部分,流体的流速逐渐降低。流体静压能增加。至出口处的压力较高得以排出。工作流体可为蒸气、水或其他流体,其所吸入的流体可为液体或气体。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条