1) arithmetical series
算术级数,等差级数
2) arithmetic progression
算术级数;等差级数
3) arithmetical series
等差级数
1.
The method for finding"heng-diameter"and"gui-length"in the Zhou Bi Suan Jing(Arithmetical Classic of the Zhou Gnomon)can be regarded as an application of linear interpolation, while that for finding sun s displacement in the Dayan Calendar is similar to the sum formula of arithmetical series proposed by Liu Hui.
《周髀算经》中求“衡径”和“晷长”的方法可以视为一次插值法的应用,《大衍历》中“先定日数,径求积度及分”的方法实与刘徽提出的等差级数求和公式一致。
4) arithmetic equal power series
算术等幂级数
1.
In this paper,We given the generating functions,and brief expression;and the application to the descussion of arithmetic equal power series on a kind of new number related with stirling number.
本文给出了一类和stirling数相关的新数的生成函数、简明表示式以及在讨论算术等幂级数中的应用。
5) arithmetic progression
算术级数
1.
They also remarked that Heath-Brown gave explicitly infinitely many 4-term arithmetic progressions,where each term can be written as sums of two squares.
Heath-Brown具体构造出无穷多组4项算术级数,其中每项均能表示为两个正整数的平方和。
2.
It has been proved that the primes contain arbitrarily long arithmetic progressions.
已有结论表明:素数集中存在任意长的算术级数。
3.
In this article, we prove that the ternary Goladbach problem in arithmetic progression can be solved for almost all large positive moduli, where the moduli can be as large as AT1/6-ε.
本文考察了几乎所有模的算术级数中的奇数Goldbach问题。
6) Arithmetic progressions
算术级数
1.
Every large odd integer can be represeted as the sum of three primes which take from arithmetic progressions.
解决了三素数定理推广到素数取自算术级数的问题。
补充资料:算术级数
又称“等差级数”。形如a+(a+d)+…+(a+nd)+…的级数。其中d称为公差。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条