1) image analysis
图像分析,析像
2) image analysis
图像分析
1.
Real-time monitoring of gas-shielded tungsten arc welding pool with DSP-based image analysis;
基于DSP的氩弧焊焊池实时监控图像分析技术
2.
Characteristics of pores on membrane surface by image analysis;
膜面孔特征的图像分析研究
3.
Talk about image analysis in fire detection;
浅谈火灾探测中的图像分析
3) Image analyzing
图像分析
1.
Research on Image Storage of Video Surveillance System Based on Image Analyzing;
基于图像分析的视频监控系统信息存储技术的研究
2.
According to the object steel tube s sate and the image, studying how to use image analyzing technology to measure steel tube s thickness, is.
根据待测量钢管的客观情况和采集到的钢管图像的特征,如何用基于图像分析处理的技术来实现钢管的厚度测量,是本文的主要研究内容。
3.
The study applied image analyzing technology to detect seed empty hills.
应用图像分析技术对超级稻高速连续钵体盘育秧播种的空穴进行了在线检测。
5) image processing
图像分析
1.
This paper aims to present our study of visibility of the building exit signs quantitatively and qualitatively through experiments and digital image processing (DIP).
结果表明,数字图像分析是量化烟气条件下疏散指示能见度的一种有效方法。
2.
Based on image processing by image analyzing program,maximum continuous flame height and maximum flame height were estimated.
开展了不同火源形状因子(1≤s≤3)的较大功率矩形油池火实验,测量了燃料的质量损失速率,借助编制的图像分析程序处理实验视频得到了连续火焰最大高度(Lc)和火焰最大高度(Lm)。
6) imaging analysis
图像分析
1.
Objective To explore the differences in Haversian system between human and animal bones through imaging analysis and morphology description.
目的探讨人与狗、猪、牛、羊长骨的哈氏系统的形态特点、图像分析特点及其鉴别要点。
2.
PurposeTo find a new simple and pragmatic indicator for the diagnosis and judgment of the prognosis of IgA Nephropathy by multiparameter analysis of IgA deposits using computerimaging analysis system.
本文通过应用计算机图像分析系统对IgA沉积物进行多参数分析,探讨沉积物参数与组织病理学指标之间的相关性,以期为IgA肾病的诊断和预后提供一个新的简单而实用的预后指标。
3.
The quantity of apoptotic cells was calculated and cell lesion was analyzed with imaging analysis technique.
方法采用持续力竭性游泳复合线栓法建立脑梗死急性期气虚血瘀证大鼠模型,脑组织石蜡切片行脱氧核苷酸末端转移酶介导的核苷酸缺口末端标记法(TUNEL)染色,观察复合模型组与正常组、单纯游泳对照组及单纯线栓对照组大鼠尾状核神经元凋亡的情况,并采用图像分析技术计数凋亡细胞数、分析细胞损伤情况。
补充资料:图像分析
用模式识别和人工智能方法对物景进行分析、描述、分类和解释的技术,又称景物分析或图像理解。20世纪60年代以来,在图像分析方面已有许多研究成果,从针对具体问题和应用的图像分析技术逐渐向建立一般理论的方向发展。图像分析同图像处理、计算机图形学等研究内容密切相关,而且相互交叉重叠。但图像处理主要研究图像传输、存储、增强和复原;计算机图形学主要研究点、线、面和体的表示方法以及视觉信息的显示方法;图像分析则着重于构造图像的描述方法,更多地是用符号表示各种图像,而不是对图像本身进行运算,并利用各种有关知识进行推理。图像分析与关于人的视觉的研究也有密切关系,对人的视觉机制中的某些可辨认模块的研究可促进计算机视觉能力的提高(见机器视觉)。
分析过程 下图为一个分级的图像分析过程的模型。图像分析基本上有四个过程。①传感器输入:把实际物景转换为适合计算机处理的表达形式,对于三维物景也是把它转换成二维平面图像进行处理和分析(见图像表示)。②分割:从物景图像中分解出物体和它的组成部分(见图像分割)。组成部分又由图像基元构成。把物景分解成这样一种分级构造,需要应用关于物景中对象的知识。一般可以把分割看成是一个决策过程,它的算法可分为像点技术和区域技术两类。像点技术是用阈值方法对各个像点进行分类,例如通过像点灰度和阈值的比较求出文字图像中的笔划。区域技术是利用纹理、局部地区灰度对比度等特征检出边界、线条、区域等,并用区域生长、合并、分解等技术求出图像的各个组成成分。此外,为了进一步考察图像整体在分割中的作用,还研究出松弛技术等方法。③识别:对图像中分割出来的物体给以相应的名称,如自然物景中的道路、桥梁、建筑物或工业自动装配线上的各种机器零件等。一般可以根据形状和灰度信息用决策理论和结构方法进行分类,也可以构造一系列已知物体的图像模型,把要识别的对象与各个图像模型进行匹配和比较。④解释:用启发式方法或人机交互技术结合识别方法建立物景的分级构造,说明物景中有些什么物体,物体之间存在什么关系。在三维物景的情况下,可以利用物景的各种已知信息和物景中各个对象相互间的制约关系的知识。例如,从二维图像中的灰度阴影、纹理变化、表面轮廓线形状等推断出三维物景的表面走向;也可根据测距资料,或从几个不同角度的二维图像进行景深的计算,得出三维物景的描述和解释。
应用 针对具体对象的图像分析技术,已经应用在工业、检测、遥感、计算机、军事等技术中。①工业自动化方面:如机器手抓取物体,自动操纵线焊机和切削刀具,与制造超大规模集成电路有关的工艺如引线焊接、片子对准和封装,对于油井现场或地震资料的大量数据进行监测和筛选,对自动装配和修理提供视觉反馈。②检测方面:有检查印刷电路板上的尖角、短路和联接不良,检验铸件中的杂质和裂缝,筛选医学图像和断层图像,常规筛选工厂产品。③遥感方面:有制图学、交通监控、资源管理、矿物勘探。④计算机应用方面:有信息系统管理,文件阅读机,建筑和机械工程的计算机辅助设计。⑤军事方面:有跟踪运动物体、自动导航、目标搜索和测距等。
发展趋势 虽然图像分析的研究已经取得不少成果,并在许多领域的具体对象上得到实际应用,但是在建立共同的理论基础方面还存在很多问题,有待进一步解决。例如图像的精确表示形式,在不同分辨率水平上表示表面信息,建立表示的分级构造,利用和确定表面颜色和状态信息,对运动状态的感知过程,从光学流中获取信息的方法,在视觉感知中应用有关专门信息的方法等。
参考书目
M.D.Levine,Vision in Man and Machine, McGraw-Hill Book Company, New York, 1985.
分析过程 下图为一个分级的图像分析过程的模型。图像分析基本上有四个过程。①传感器输入:把实际物景转换为适合计算机处理的表达形式,对于三维物景也是把它转换成二维平面图像进行处理和分析(见图像表示)。②分割:从物景图像中分解出物体和它的组成部分(见图像分割)。组成部分又由图像基元构成。把物景分解成这样一种分级构造,需要应用关于物景中对象的知识。一般可以把分割看成是一个决策过程,它的算法可分为像点技术和区域技术两类。像点技术是用阈值方法对各个像点进行分类,例如通过像点灰度和阈值的比较求出文字图像中的笔划。区域技术是利用纹理、局部地区灰度对比度等特征检出边界、线条、区域等,并用区域生长、合并、分解等技术求出图像的各个组成成分。此外,为了进一步考察图像整体在分割中的作用,还研究出松弛技术等方法。③识别:对图像中分割出来的物体给以相应的名称,如自然物景中的道路、桥梁、建筑物或工业自动装配线上的各种机器零件等。一般可以根据形状和灰度信息用决策理论和结构方法进行分类,也可以构造一系列已知物体的图像模型,把要识别的对象与各个图像模型进行匹配和比较。④解释:用启发式方法或人机交互技术结合识别方法建立物景的分级构造,说明物景中有些什么物体,物体之间存在什么关系。在三维物景的情况下,可以利用物景的各种已知信息和物景中各个对象相互间的制约关系的知识。例如,从二维图像中的灰度阴影、纹理变化、表面轮廓线形状等推断出三维物景的表面走向;也可根据测距资料,或从几个不同角度的二维图像进行景深的计算,得出三维物景的描述和解释。
应用 针对具体对象的图像分析技术,已经应用在工业、检测、遥感、计算机、军事等技术中。①工业自动化方面:如机器手抓取物体,自动操纵线焊机和切削刀具,与制造超大规模集成电路有关的工艺如引线焊接、片子对准和封装,对于油井现场或地震资料的大量数据进行监测和筛选,对自动装配和修理提供视觉反馈。②检测方面:有检查印刷电路板上的尖角、短路和联接不良,检验铸件中的杂质和裂缝,筛选医学图像和断层图像,常规筛选工厂产品。③遥感方面:有制图学、交通监控、资源管理、矿物勘探。④计算机应用方面:有信息系统管理,文件阅读机,建筑和机械工程的计算机辅助设计。⑤军事方面:有跟踪运动物体、自动导航、目标搜索和测距等。
发展趋势 虽然图像分析的研究已经取得不少成果,并在许多领域的具体对象上得到实际应用,但是在建立共同的理论基础方面还存在很多问题,有待进一步解决。例如图像的精确表示形式,在不同分辨率水平上表示表面信息,建立表示的分级构造,利用和确定表面颜色和状态信息,对运动状态的感知过程,从光学流中获取信息的方法,在视觉感知中应用有关专门信息的方法等。
参考书目
M.D.Levine,Vision in Man and Machine, McGraw-Hill Book Company, New York, 1985.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条