说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 优奇人
1)  Yuchi [英]['ju:tʃi]  [美]['jutʃɪ]
优奇人
2)  prodigy [英]['prɔdədʒi]  [美]['prɑdədʒɪ]
奇人
1.
As far as how to understand SIMA Qian s appreciating prodigy is concerned, different eras have different explanations because each explanation is from the explorer s social setting and the values of his living era.
“奇人”是司马迁个人所理解的创造历史的社会精英 ,是富于感召力的神圣人物和文化符号 ,也就是韦伯 ( Webber)、希尔斯 ( Shiers)称之为卡里斯马 ( Charisma)的权威人物。
3)  odd-even carbon number preference
奇偶优势
4)  Eudragit
优特奇
5)  odd graceful
奇优美
1.
In this paper, we define a class of new graph-spoon star graph and as wellas weak odd strong harmony graph, is defined, the writers give Stn P1C4’s odd graceful labeling、k- graceful labeling and weak odd strong harmony labeling,and prove that the Stn P1C4 is a odd graceful graph, k-graceful graph and weak odd strong harmony graph.
该文定义了一类新的图形——星勺图StnP1C4,并定义了图的次奇强协调性,同时给出了它的奇优美标号、k-优美标号及次奇强协调标号,从而证明了星勺图StnP1C4是奇优美图、k-优美图和次奇强协调图。
2.
In this paper,we obtain three kinds of graphs by adding some vertices and some edges on,and proved that the three kinds of graphs not only are allgraceful,odd graceful,but also are balanced graphs and alternating graphs.
本文通过在上增加一些顶点和边,得到了三种图,并得出此三种图均是优美的,奇优美的,也是交错图,平衡图,同时给出了相应的标号。
3.
It is shown that∪ni=1 Pli, ∪ni=1 Sli, ∪ni=1 Sli ∪∪ti=1 Pmi ,Cm ∪Pn and Cm ∪Cn are odd graceful, and that ∪ni=1 Cmi is odd graceful when mi ≡0(mod4).
讨论了并图∪ni=1Pli,∪ni=1Sli,∪in=1Sli∪∪it=1PmiCm∪Pn, Cm∪Cn和∪in=1Cmi,∪in=1Pli,∪in=1Sli,∪in=1Sli∪∪it=1PmiCm∪Pn, Cm∪Cn被证明了是奇优美的,∪in=1Cmi当mi≡0(mod4)时是奇优美的。
6)  odd graceful graph
奇优美图
1.
If there exists a mapping f: V→{0,1,2,…,2E|-1} which satisfies: u,v∈V,if u≠v,then f(u)≠f(v);max{ f(v)|v∈V}=2|E|-1; e 1,e 2∈E,if e 1≠e 2,then g(e 1)≠g(e 2),here g(e)=|f(u)-f(v)|,e=uv;{g(e)|e∈E}={1,3,5,…,2|E|-1 },then G is called an odd graceful graph,and f is called odd graceful labeling of G.
对于简单图G=,如果存在一个映射f:V→{0,1,2,…,2E|-1}满足:对任意的u,v∈V,若u≠v,则f(u)≠f(v);max{f(v)|v∈V}=2|E|-1;对任意的e1,e2∈E,若e1≠e2,则g(e1)≠g(e2),此处g(e)=|f(u)-f(v)|,e=uv;{g(e)|e∈E}={1,3,5,…,2|E|-1},则称G为奇优美图,f称为G的奇优美标号。
补充资料:奇人
1.异人﹐非常之人。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条