说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 逆的
1)  reciprocal [英][rɪ'sɪprəkl]  [美][rɪ'sɪprəkḷ]
逆的
2)  opposite-flow
逆流,逆流的
3)  inverse [英][,ɪn'vɜ:s]  [美]['ɪn'vɝs]
反的;逆的
4)  inverse matrix
矩阵的逆
5)  locked against rotation
防逆转的
6)  invertible [in'və:tibl]
可逆转的
补充资料:矩阵求逆


矩阵求逆
inversion of a matrix

}1 10·011}}la,·a_{} T一,=卫‘}}b:1二1{·}}01·}}十 P,{l。1 11}_。{l 二了,日二"IJ .a,11 }}b。·b:1{}{!o·01!{ {10·…0 11!}ob_…b,}} !}a_·!11}·01} P。}}二}}1}.b.}1 1}a,‘·‘a。0}1}}00…o}} (2)其中向量 上(lb,二b_)r和上(。_…。,“ P二一P。分别是T一’的第一列和最后一列因此,T完全由给定的它的第一列和最后一列描述.由(2),T一’的所有元素可以逐次计算出: {T一’}‘、:,,、,一{T一’}:,,+ +上(b.,。一。b_、. P。这个计算需要O(”2)个算术运算. 在予笼plitZ矩阵求逆的经济算法(例如见【3』)电a‘,气和p。的计算是由递归公式进行的.而且也需要O(n’)个运算.主子矩阵非奇异这个条件可以放宽,而仍然只需要O(nZ)个算术运算. 矩阵求逆有时是为了用公式x二A一’b来解线性方程组Ax=b.对一般形式的矩阵,这样做几乎没有意义,因为与线性方程组的直接求解方法相比较,它将增加运算量而且损失数值稳定性.可是对及即h忱(和有关的)矩阵,情况就不同了.如表达式(2)所示,T一’b的计算简化为执行毛义plits矩阵和向量的四个乘法和一个向量减法.有毛笼pliIZ矩阵与向量乘的经济算法,这种算法需要(对n阶)O(”losn)个运算.对予笼plitZ方程组的解法,算术运算量还不能达到这种渐近状态(现在,这些算法中最好的方法需要O(n fogZn)个运算).因此,对具有同一予艾plitZ矩阵T和不同右边b的线性方程组Tx=b的重复求解,预先将T求逆似乎是合理的. 在具有许多并行处理器的计算机上,重复求解具有同一个一般形式矩阵的线性方程组时,预先求出矩阵的逆是很合理的,因为与矩阵与向量相乘比较,解线性方程组的直接法不具有这种方便的并行性. 在许多情况(例如在数学规划的拟Newton方法中),要求矩阵A的逆,它与具有已知逆阵B一’的矩阵只相差一个秩为l的矩阵或(在B是对称矩阵情况)秩为2的一个对称矩阵.对n阶矩阵,这样重新构造一个逆矩阵可用O(。2)个运算来完成.下面的公式可以作为一个例子(见【4』):如果u和v是列向量,则 (刀+。。T)一,一刀一‘一生刀一1“。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条