1) reactivity perturbation
反应性微扰
2) reactivity disturbance
反应性扰动
1.
The lumped parameter model of heat transfer coupling with double group point reactor model was used to simulate reactivity disturbance for small pressurized water reactor at higher power condition and lower power condition,respectively.
本文采用双群点堆动力学模型耦合传热集总参数模型,分别对小型压水堆高、低功率条件下反应性扰动进行模拟,并与三维仿真模型进行比较。
3) interfering response
干扰性反应
4) oscillatory reactivity perturbation
振荡反应性扰动
5) differential reactivity
微分反应性
补充资料:持续作用扰动下的稳定性
持续作用扰动下的稳定性
stability in the presence of persistently acting perturbations
持续作用扰动下的稳定性仁咖幽勺协触脚。曰盆兄of哪滋众团ya曲嗯碑由州画d.侣;yc功后”.即c几np班noc”-,。110朋益e拍即IO四,x BO3M脚日e朋,xj 初值问题 交=f(x,r),x(t。)二x。,x任R”(*)之解x。(t)(t)t。)的如下性质:对每一个。>O都有一个占>O使得对每一个适合不等式!y。一x。}<占的夕.,,以及满足以下条件的每一个映射g(x,:): a)在集合 E:={(x,t):t)t。,{x一x。(t)i<。}上g和g,都连续; b)s印(:,,)。::}夕(x,t)一f(x,t)I<吞,初值问题 乡=g(y,t),夕(t。)=夕。,夕任R”的解y。(t)对一切t)屯,有定义且满足不等式 suP}y。(t)一x。(t)}<£. r)t。 Bohi定理(B心h】t玩”~)(【11).设初值问题(,)有解x(t),t)t。,满足以下条件: 幻f和fx对某个。。在瓦。上连续; 刀)s叩。,:。4}人(x(t),t)}}<+的: 下)映射f在点(x(t),‘),t)t。,处对x可微,这个可微性对t)t。是一致的,即 s叩兴}厂(二(‘)+,,,)一f(、(。),:)+ ,》万。}y} 一人(x(t),亡)yl~0当y一,O时.这时,为使初值问题的解在持续作用的扰动下为稳定,必要与充分条件是:方程组又=厂(x,t)沿解x(t)的变分方程(粗血tiona】叹业tio璐)组的上奇异指数(见奇异指数(s泊g止汀exponents))小于零. 若f(x,t)不含t(即自治系统),而解x(t)为周期的或常值的;或者f(x,t)对t有周期而解x(0也有相同的(或可公度的)周期或者常值,则:l)Bohi定理中所陈述的一致可微性条件是多余的(它可从定理的其他条件导出);2)方程组交=f(x,t)沿解x(t)的变分方程组的上奇异指数可以有效地算出来.【补注】持续作用扰动下的稳定性也称为持续扰动下的稳定性(stab正ty Under pelsis招ni perturhatio幻)或全稳定性(total stabiljty).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条