1) neutron energy groups
中子能群
2) fast-neutron group
快中子群、快中子[能]组
3) central subgroup
中心子群
1.
In this paper,finite groups with commutative automorphism groups are studied by using the methods of ring theory,and a new technique for construcing automorphisms is introduced which can be used to prove such non-commutative groups and their maximal subgroups have non-cyclic central subgroups.
借助于环论的方法研究了具有交换自同构群的有限群,提出了一种新的自同构构作技术,并用之证明了这样的非交换有限群具有非循环的中心子群,以及其每个极大子群的中心子群也都非循环。
2.
In 2008, Ya-dav proved that if G is a finite non-abelian p-group and M is a central subgroup of G then CAut G(G/M, Z(G))=Inn G if and only if the nilpotency class of G is 2,G\'≤M and M is cyclic.
2008年Yadav将其推广为:如果G是有限非交换p-群且M是G的一个中心子群,则当且仅当G的幂零类为2,G\'≤M且M是循环群。
4) fast group
快中子群
6) central series of subgroup
中心子群列
补充资料:脑门心子
1.指头顶的正中心。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条