1) polygon surface
多边形表面
2) Polygon
[英]['pɔlɪɡən] [美]['pɑlɪ'gɑn]
平面多边形
1.
Recognition of polygon based on homograph principle;
基于类似形原理识别平面多边形
3) regular polygon surface
正多边形面
4) surface polygon
曲面多边形
1.
An algorithm for recognizing surface polygonsin lattice frame and lattice shell;
网架和网壳中曲面多边形的一种识别算法
5) planar polygon
平面多边形
1.
The Evaluation of Point Inclusion Test for Planar Polygon;
平面多边形内外点判定算法评估
6) polygon-patch
多边形面片
补充资料:多边形
有限个点A1、A2、A3、...、An-1、An和线段 A1 A2、A2A3、...、An-1An的总体,叫做折线。A1和An叫做这折线的端点;A2、A3、...、An-1叫做折线的顶点;A1A2、A2A3、...、An-1An叫做折线的段节。如果折线的端点和各顶点不在同一平面内,则叫做空间折线;如果各顶点和两端点都在同一平面内,就叫平面折线。两端点重合的折线,叫做多边形。由空间折线构成的多边形叫做空间多边形;由平面折线构成的多边形叫做平面多边形。如果折线A1A2A3...An-1An的两端点 A1和 An重合,就成多边形A1A2A3... An-1An;A1A2、 A2A3、 ...、 An-1An 叫做多边形的边;∠AnA1A2、∠A1A2A3、...叫做多边形的角;A1、A2、A3、...、An-1、 An叫做这个多边形的顶点。平面多边形按边数分类,可分为三边(角)形、四边形、五边形、六边形等等。
如果多边形任意两边都没有公共的内点,任一边内都不含有顶点,并且每个顶点仅仅是两边的端点,这样的多边形叫做简单多边形。如果就平面简单多边形的每边所在直线而言,其余所有的边都在这直线的同侧,这样的多边形叫做凸多边形。
每个平面简单多边形都把平面分成两个区域,其中有且仅有一个域完全包含着某一直线。这个区域的点叫做多边形的外点,另一区域的点叫做多边形的内点(这就是若尔当定理)。
如果两凸多边形的角对应地相等,对应边也相等,这两个多边形就叫做全等多边形。凸多边形中,如果各边相等且各角也相等,这样的多边形叫做正多边形。
正多边形的作图,就是等分圆周的问题。仅用尺规把圆周n等分,当且仅当n是如下形状的整数时才可能:
①n=2m(如正四、八、十六、三十二、六十四边形)(m∈Z+,m≥2);
②n=p=,且p是素数(如正三、五、十七边形)(t∈Z+,t=0);
③(如正六、十二、二十四边形),pi是型的素数且各不相同 (m∈Z+,t∈z+和t=0)。
在边数不超过100的正多边形中,仅用尺规即可作出的只有24个。
如果多边形任意两边都没有公共的内点,任一边内都不含有顶点,并且每个顶点仅仅是两边的端点,这样的多边形叫做简单多边形。如果就平面简单多边形的每边所在直线而言,其余所有的边都在这直线的同侧,这样的多边形叫做凸多边形。
每个平面简单多边形都把平面分成两个区域,其中有且仅有一个域完全包含着某一直线。这个区域的点叫做多边形的外点,另一区域的点叫做多边形的内点(这就是若尔当定理)。
如果两凸多边形的角对应地相等,对应边也相等,这两个多边形就叫做全等多边形。凸多边形中,如果各边相等且各角也相等,这样的多边形叫做正多边形。
正多边形的作图,就是等分圆周的问题。仅用尺规把圆周n等分,当且仅当n是如下形状的整数时才可能:
①n=2m(如正四、八、十六、三十二、六十四边形)(m∈Z+,m≥2);
②n=p=,且p是素数(如正三、五、十七边形)(t∈Z+,t=0);
③(如正六、十二、二十四边形),pi是型的素数且各不相同 (m∈Z+,t∈z+和t=0)。
在边数不超过100的正多边形中,仅用尺规即可作出的只有24个。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条