说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 通道等待队列
1)  channel waiting queue
通道等待队列
2)  channel,waiting queue
等待队列信道
3)  wait queue
等待队列
1.
In this paper,we analyze and compare several implementation methods of SAN(Storage Area Networks) storage virtualization,and design a wait queue scheduling model based on network storage,which can efficiently perform scheduling,and increase the performance and efficiency of storage virtualization managemen
本文分析和比较了在存储区域网络体系结构中存储虚拟化的多种实现方式,并设计了一种基于网络存储的等待队列调度模型,可以更高效地执行调度,提高存储虚拟化管理的性能和效率。
4)  channel queue
通道队列
5)  Wait Queue Schedule
等待队列调度
6)  device waiting queue
设备等待队列
补充资料:等待制的单通道排队


等待制的单通道排队
queue with waiting and one service channel

  等待制的单通道排队Iq.”.初由w颐恤艰田d姗肥币沈d.I.已;Maceo.oTO o6c月y角.侧扭”ac班c碑Mal,单服务台排队(singie一sen尼rql笼ue)‘’立种排队,其服务规则规定(发现系统正繁忙)没有立即被服务的呼唤形成一个排队,而对此呼唤(或成批呼唤)的服务只能开始于前一个呼唤(或成批呼唤,若服务是成批进行的)服务完之后.基本定义与记号见排队(q娜ue). 排队系统的状态有如下非常自然的特征参数:a)直到第n个呼唤开始服务的等待时间w。和定义为时刻t前到达的呼唤服务完毕所需时间的虚等待时间、(t);b)第n个呼唤到达时的队长q。和时刻t的队长q(t). 1)在“单的”情形(v丁三I),值、。之间有递推关系: w。,,=max(0,w。+看。),亡。=:二一:二·(l) 排队系统在“多的”情形,当,了与,J都不是l时,也可用同样类型的方程来描述(对等待时间或队长).例如,对队长q。有关系式 任。+一rnax(0,Q。+,二一刀。),(2)其中月。为在系统连续运行的情况下时间;二内能服务的呼唤数·如果{::}‘E,{,{卜G,,那么口。的分布可以由关系式 〔::一exn卜:礴」‘一,,尸‘·;一“,{给出,其中:为心分布的指数, 如果置X0“O,戈二七:十…+七。,那么(l)式的解有如下形式 w。·、一戈一恤(一w、,X】,’‘,戈)一(3) “~(戈十w,,戈一X,,二,戈一戈一,,0).因此,如果{古。}任G、且对固定区间八,当n~co时,p{戈它△}一卜0,那么等待时间有极限分布: 。叭p{W。>x}一p丈Y>x},其中 Y二s叩玖,玖=石一*十“’十古一、,Y0“0. 上)0这里变量之、为序列{亡。}孔,延拓到全轴上的平稳序列{否。}杀一。的元素.下面假设对所有控制序列都做这种延拓 下面的值、食=s叩(o,心*,七*+心*一,古。+亡*一t+七*一2,”)满足(1)且具有与w。的极限分布完全一样的分布.这就是平稳等待时间过程. 令{古。}‘G,为遍历的(以概率1,戈/。一E否,).如果E否*<0或E亡*“o且省*=叮*、,一刀*,其中{叮*;‘G:,那么 p{Y<的}二p{w介<田}=1.否则,p{Y=的}=p{w瓦二的}二l·如果{睿。}‘G才,那么 P{Yx}二p{Y>x}存在、其中 Y=suPY(t),Y(t)“X(0)一X(一t). “多0 此外,如果 E(X(l)一X(0))=E(Y(1)一Y(0))=a<0,那么过程 w,(“)={w(t一u)二u)o}的分布当t一,田时收敛到严平稳虚等待时间过程 w,(u)=suP(X(u)一X(v)) p‘u的分布.这里的收敛性在强形式下成立,即对任意可测集B,有 p{w,任B}~p{w‘〔B}· 进一步,如果{X(t)}“G,:且ak}一p{w。>T;+”‘+T;}· 如果{T夕}任G,,{;了}eG,且T歹有非格点分布,那么 ,叭p{叹(‘)>k+l}- =p{w。>T万+一+T之+,},k)o, 顿p{。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条