1) unsystematic
[英][,ʌn,sɪstə'mætɪk] [美]['ʌnsɪstə'mætɪk]
无系统性
3) Infinite-dimensional linear systems
无穷维线性系统
4) Gyro-free inertial system
无陀螺惯性系统
5) memoryless linear system
无记忆线性系统
6) gyro-free inertial navigation system
无陀螺惯性导航系统
1.
Research on a calibration method for gyro-free inertial navigation system using six accelerometers;
一种六加速度计无陀螺惯性导航系统安装误差校准方法研究
2.
Improving the accuracy of angular resolution is the key way to improve the navigation parameter resolution precision of accelerometer based gyro-free inertial navigation system.
提高角速度解算精度是提高无陀螺惯性导航系统导航参数解算精度的主要途径。
补充资料:无限维空间
无限维空间
infinite-dimensional space
无限维空I’N[词训妞一曲】.‘0“目印暇;6ee劝”e,。oMep-Hoe npocTp曲cT加」 一个正规的Tl空间X(见正规空间(加mulsPa、ce)),使得对于任何n-一1,O,I,…都不满足不等式d而X(。,即X摊必,并且对任何。二0,1,…存在X的有限开覆盖口。,使得加细口。的任何有限覆盖的重数都>n十1.无限维空间的例子有H川祀rt立方体(Hilbert cube)I的和玫xonoa立方体(T正五o-nov cube)r.泛函分析中碰到的大多数空间也都是无限维空间. 一正规的T;空间X称为在大(小)归纳维数(la卿(sn飞l且)泊ducti记dlme比1on)意义下的无限维空间,如果不等式Ind延n(ind簇n)对任何。=一1,0,1,…都不成立.若X是无限维空间,它就是在大归纳维数意义下的无限维空间.如果X还是紧空间,它也就是在小归纳维数意义下的无限维空间.一个度量空间是无限维空间,等价于它在大归纳维数意义下是无限维空间.存在一些有限维紧统,在小(因而在大)归纳维数意义下是无限维空间.(截至目前)还不知道是否存在一个紧统(或一个度量空间),在小归纳维数意义下是有限维空间,而在大归纳维数意义下却是无限维空间. 研究无限维空间最自然的方法之一,是引进小超限维数indX和大超限维数Ind X.这种方法在于把大小归纳维数的定义推广到无限序数上.超限维数indX和l刀dX并非对所有无限维空间都有定义.例如,对Hilbert立方体而言,两者均无定义.大超限维数对空间日尸无定义,但indU尸=田。,这里U尸是”维方体尸(n=O,1,…)的离散和. 若超限维数indX(IndX)对正规空间X有定义,那么这个维数等于一个序数,其基数不超过X的权wX(大权Wx).特别是,若X具有可数基,则有indX(田,;若X是紧空间,也有haX<。,.对于度量空间,也有IndX<田:.若,<田、,则存在紧统s:和L:,使得IndS:=“,初L。=“.对任何序数“<田、,存在度量空间戈,使得ind戈=“.如果超限维数IndX有定义,则超限维数indX也有定义,并且泊dX簇】hdX.己经构造出一些度量紧统,使得超限维数玩dx有定义,并且田。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条