说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多元变量
1)  polytomy variable
多元变量
2)  multi variable
多元自变量
1.
In this paper, the self modeling regression model with shape invariance and multi variable is built up, its calculation is considered, and its application example with the education measure data is given.
将关于形状不变的自建模回归模型推广到多元自变量,解决了计算问题,并结合教育测量数据给出了实例。
3)  Multivariate binomial responses
多元二分类变量
4)  multivariable principal component analysis
多变量主元分析
5)  multi variable finite element
多变量有限元
1.
A plane four node multi variable conforming isoparametric element MQ 4 was construc ted by the uniform formulation of multi variable finite element models.
应用建立多变量有限元模型的统一列式,构造了平面四结点多变量协调等参元MQ4 ,其简单性与单变量位移型协调等参元Q4 类似,计算精度却有了很大提高。
2.
A uniform formulation of multi variable finite element models, which is based on rationale of weighted residual method, is derived.
应用加权残值法基本原理,导出了建立多变量有限元模型的统一列式,讨论了该列式与几种典型多变量有限元模型[1~6,10~12]的对应关系及退化关系和等价关系。
3.
A concise and new formulation for establishing multi variable finite element models was derived by the weighted residual method.
应用加权残量法基本原理 ,给出了建立多变量有限元模型的简明格式和新的列式 ,讨论了该列式与几种典型多变量有限元模型的对应、退化和等价关系 。
6)  multivariable isoparametric element
多变量等参元
1.
A concise formulation of multivariable isoparametric elements based on weighted residual approach and its applications;
基于加权残量法的多变量等参元简明列式及其应用
补充资料:具有分布自变量的常微分方程


具有分布自变量的常微分方程
ifferential equations, ordinary, with distributed arguments

具有分布自变,的常微分方程l击肠,曰问冈.枷.,.宙-.别,,初山业幼h功目.奄团长”肠;及一巾中e琳四班a剐oe ypa-.e,,。。~ff~,e,apr,e。。M],县亨停着孪元的常微分方程(oIdj灿刁山价代泊回闪uations with devi-a石ng(山喇泊让d)盯卿山即匕) 联系自变量,未知函数及其导数,通常对自变量的不同值取值的常微分方程.例如: x‘(t)“ax(t一:),(l) x‘(t)“ax(kt),(2)其中常数a,T和k是给定的;方程(l)中的T和方程(2)中的t一kt是自变量的偏差(山丫政t沁ns),延迟恤如山山招)或滞后(h矛).还有带许多自变量偏差的更复杂的微分方程,这些偏差可以表成给定的函数(特别地,如果它们是常数,则方程常常被当作微分一差分方程(由晚比吐阁刁正免化你笼叫以沁朋))或者甚至依籁所录的解.还有一些零散论文研究未知函数依赖于多个自变量的带偏差变元的微分方程.带偏差变元的微分方程的首次出现与偏微分方程的形式解有关,以后由于对方程本身的研究又出现在几何问题中,后来又出现在各种应用中,主要是在自动控制理论(a uton叼ticcontiDlti峨,动中.带偏差变元的微分方程理论的系统形成开始于1949年. 带偏差变元的微分方程的定义允许所求的解(形如x”(x(t”)和它的积分的任何叠加;从形式上讲,这类带偏差变元的常微分方程包含了数学分析中所有的方程.但通常理解的带偏差变元的常微分方程是指常微分方程中普通的一类,在这类方程中引进了理论上有意义的自变量的偏差.这种方程有几个性质完全类似于常微分方程,而其他性质主要是新的. 方程(或方程组) x〔”)(:)=f(:;x(从,)(r一;,),…,x(用·)(t一;,))(3)(对方程组,x和f是向量),其中所有马妻O,如果~,。,n,则分别称为琴谬(横和掣(记恤心司(吨)tyl笼)、中立型(拙曲阁tyl珍)和先导掣(h吐飞type)微分方程(组).其他形式的方程在用替换t~x(t)变成形式(3)的基础上,再按此方法分类,其中x(t)是一个增函数;例如方程(l),如果:)仪则是延迟型的,如果;<众则是先导型的(用替换t~t十T).如果偏差马依赖于t,则方程(3)可以变换类型;因此,具有k蕊l的方程(2),如果t)众则是延迟型的,如果t蕊。,则是先导型的.如果几依赖于所求的解,则方程(3)对不同的解可以是不同类型的.带延迟型偏差变元的微分方程的理论研究得最仔细,中立型的研究得较少,而先导型的还没有研究到任何有意义的程度. 下面是最简单类型的带偏差变元的微分方程中的一种: x‘(t)于厂(t,x(t),x(r一t)),下>0.(4)以下的基本初值问题(几压运m切因i川t阁词ueprob1On)对这类问题作了表达:给定初值点t。,初始函数中(r),r。一;(t簇t。,和值x(r。+0);方程(4)对此问题的解理解为函数x(O(t>t0),它使得方程(4)恒成立,并且如果t>t。,卜T成t0,则在方程的右端用势(卜;)代替x(卜劝,该问题可用步进法恤℃thodofste声)求解:如果t0t。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条