1) linear discrimination function
线性辨别函数
2) Nonlinear function identifi-cation
非线性函数辨识
3) linear discriminant function
线性判别函数
1.
The rigorous theory of linear discriminant function and decision surface is suitable for the analysis of linear neurons with threshold activation function used as linear classifiers.
严谨的线性判别函数与判别面的理论 ,适用于线性阈值 (MP模型 )神经元分类行为分析。
4) linear discrimination function
线性鉴别函数
1.
A method of obtaining a binary linear discrimination function ( d m(x)=w x ) with rotation invariance is presented.
本文提出一种求解具有旋转不变分类的二值线性鉴别函数(dm(x)=wmx)的新方法,并对轰炸机和战斗机两类目标及客机、轰炸机和战斗机三类目标的旋转不变分类进行了计算机模拟。
5) piecewise linear sentential function
分段线性判别函数
6) fuzzy linear discriminant function
模糊线性判别函数
1.
Based on the fuzzy set theory, the concepts of fuzzy linear discriminant function, fuzzy decision surface, and fuzzy classification are introduced in this paper.
将非线性神经元及多层感知机分类行为分析建筑在模糊集理论基础上 ,提出模糊线性判别函数、模糊判别面、模糊模式分类等概念 ,并引导出将多层感知机的隐层权重值均匀地分布在权重空间超球面上的网络初始化方法。
补充资料:非线性系统辨识
通过输入输出数据确定非线性系统的数学模型。非线性是在研究、分析系统时常常遇到的现象。非线性系统的行为可以表现为阶跃、滞后、极限环、分岔、突变和混沌等现象。
非线性现象从整体上看是复杂的。在研究具体问题时,为了简化起见,常常把研究的范围限制在系统的局部性质上,这样就可以用泰勒展式的一次项来近似地描述系统的运动。这就是线性化的方法。但是系统的非线性性质包含在高次项中,所以为了研究非线性系统的整体行为就必须建立非线性数学模型。
非线性系统辨识中最重要问题之一是确定模型的结构。如果对系统的运动有足够的知识,则可以按照系统的运动规律(或作适当的近似)给出它的数学模型。一般说来,这样的模型是由非线性微分方程或非线性差分方程给出的。对这类模型的辨识可以采用线性化、展开成特殊函数等方法。如果对系统了解得尚不充分,则选择模型就很困难。例如对处于大冲角的飞机的动态,电力系统的暂态,气候和水文现象,各种生理反应过程等就很难给出一个数学模型。人们对非线性系统的定量性质尚缺乏完全的了解,因此就产生了根据观测到的现象决定一个非线性系统的模型是否唯一的问题。然而在各种应用中只要对系统的输入输出行为的描述是合适的,模型是否唯一便不是本质的问题。往往可以有许多非线性模型用来描述系统的行为。模型的选择取决于模型的可辨识性、参数估计的难易程度和模型适用性检验等。
非线性系统辨识的另一个途径是不管系统本身的真实结构,而着力去找出能达到要求精度的系统输入输出关系的近似模型。常见而有效的近似方法有两种,一种是利用泛函级数展开,另一种是用多项式逼近,其中最重要的是用启发式自组织原理建立的数据处理的分组方法。此外,针对各种特殊的非线性系统还可以提出许多特殊的方法。应用突变论来选择非线性模型的结构也是一种途径。
非线性系统辨识是系统辨识的一个重要的发展方向。
参考书目
夏天长著,熊光楞、李芳芸译:《系统辨识》,清华大学出版社,北京,1983。(T.C.Hsia, System Identi-fication:Least-Squeres Methods, Lexington books,Lexington, Mass., 1977.)
非线性现象从整体上看是复杂的。在研究具体问题时,为了简化起见,常常把研究的范围限制在系统的局部性质上,这样就可以用泰勒展式的一次项来近似地描述系统的运动。这就是线性化的方法。但是系统的非线性性质包含在高次项中,所以为了研究非线性系统的整体行为就必须建立非线性数学模型。
非线性系统辨识中最重要问题之一是确定模型的结构。如果对系统的运动有足够的知识,则可以按照系统的运动规律(或作适当的近似)给出它的数学模型。一般说来,这样的模型是由非线性微分方程或非线性差分方程给出的。对这类模型的辨识可以采用线性化、展开成特殊函数等方法。如果对系统了解得尚不充分,则选择模型就很困难。例如对处于大冲角的飞机的动态,电力系统的暂态,气候和水文现象,各种生理反应过程等就很难给出一个数学模型。人们对非线性系统的定量性质尚缺乏完全的了解,因此就产生了根据观测到的现象决定一个非线性系统的模型是否唯一的问题。然而在各种应用中只要对系统的输入输出行为的描述是合适的,模型是否唯一便不是本质的问题。往往可以有许多非线性模型用来描述系统的行为。模型的选择取决于模型的可辨识性、参数估计的难易程度和模型适用性检验等。
非线性系统辨识的另一个途径是不管系统本身的真实结构,而着力去找出能达到要求精度的系统输入输出关系的近似模型。常见而有效的近似方法有两种,一种是利用泛函级数展开,另一种是用多项式逼近,其中最重要的是用启发式自组织原理建立的数据处理的分组方法。此外,针对各种特殊的非线性系统还可以提出许多特殊的方法。应用突变论来选择非线性模型的结构也是一种途径。
非线性系统辨识是系统辨识的一个重要的发展方向。
参考书目
夏天长著,熊光楞、李芳芸译:《系统辨识》,清华大学出版社,北京,1983。(T.C.Hsia, System Identi-fication:Least-Squeres Methods, Lexington books,Lexington, Mass., 1977.)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条