1) radioastrometry
射电天体测量学
2) radio astrometry
射电天体测量
3) X-ray astrometry
X射线天体测量学
4) tronomy measuring methods
射电天文学测量法
5) astrometry
[英][æs'trɔmətri] [美][æs'trɑmətrɪ]
天体测量学
1.
Basic Conceptions and Definitions of Relativistic Astrometry;
相对论天体测量学中的基本概念和定义
2.
The four advanced research subjects are: (1) realization of sub-milliarcsecond and even microarcsecond astrometry by astrometric satellites to be launched at the beginning of 21 century for requirement of astronomical research and deep sky survey; (2) establishment of infrared and even multiwavelength .
简述天体测量学研究的内容以及与各相关学科之间的关系;描述近10年来国际天体测量研究的进展和前沿课题;叙述我国天体测量研究的历史背景和研究基础,以及近10年来在国家自然科学基金委员会和其他科学组织支持下取得的成果,并对今后10~20年我国天体测量的发展提出初步看法。
6) optical astrometry
光学天体测量学
补充资料:射电天体测量学
运用射电干涉技术进行天体测量的一门学科,天体测量学的一个分支。二十世纪六十年代后期,甚长基线干涉仪的试验成功,使分辨率和精度大为提高,从而使射电天体测量成为一门独立学科,并得到迅速发展。目前射电干涉测量的定位精度,已达到和光学定位精度相近的程度。射电天体测量方法,有甚长基线干涉测量和传统式干涉测量两种。后者主要是将天线用电缆(或微波传输)直接连接到接收系统上,并立即测量信号到达天线时的相位差。同光学天体测量相比,射电天体测量有下列优点:①无论角度大小,测量精度基本上是一样的,因此没有光学天体测量通常所具有的比较大的区域性系统误差;②在射电天体测量中,大气折射的影响比一般光学观测为小,因为所测量的是信号到达不同天线时的时间差或相位差,而不是天体的视方向;③可自动地以地球瞬时自转轴为参考,对赤纬进行绝对测定;④可根据观测值,同时解算出天体的位置、基线参数和仪器参数,因此,后二者的误差对天体位置基本上没有影响;⑤射电观测在白天(包括云雾天气)都可进行,比光学观测有更多的观测时间。射电天体测量在提供惯性参考系和精确测定某些天文常数方面有十分重要的作用;还可进行世界时、极移和地面点坐标的测定,以及有关的天文地球动力学方面的研究。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条