1) uniformly integrable
一致可积的
2) uniformly integrable
一致可积
1.
The nonstandard characterization of uniformly integrable functions;
一致可积函数的非标准刻画
3) uniform integrability
一致可积
1.
For weighted sums of the form k nj=1a nj d jX,where{a nj ,1≤j≤k n↑∞} is a real constants array and {d nX,n≥1} is martingale difference series,we establish the relationship between the convergence and the p\|smoothable Banach space under the condition of {a nj }\|uniform integrability,andwe get the strong law of large numbers for weighted sums of martigale difference series.
对形如 knj=1anjdj X的加权和 ,其中 { dn X ,n≥ 1}为 B值鞅差序列 ,{ anj}为实值常数阵列 ,在{‖ dj X‖ p关于 { | anj| p }一致可积的条件下建立鞅差序列加权和的收敛性与 Banach空间 p光滑性的关系 ,并给出p光滑 Banach空间中鞅差序列加权和的强大数定
2.
On this basis the necessary and sufficient conditions to the uniform integrability of sequences of fuzzy valued functions were given,and the implication relations between uniform integrability of sequences of fuzzy valued functions and the uniformly boundedness of the their fuzzy valued integrals were studied.
通过引入新乘法算子,针对模糊值函数定义了-模糊值积分,在此基础上给出了模糊值函数序列一致可积的充要条件,并研究了模糊值函数序列一致可积与其模糊值积分一致有界的蕴涵关系。
4) uniformly(H) integrable
一致(H)可积
5) Cesaro-uniformly integra
Cesaro一致可积
1.
Then,discussed the weighted sums of pairwise NQD random sequences,and studied its L~2-convergence properties and the condition of Cesro-uniformly integra,(H_1) or (H_2).
利用两两NQD列的Kolmogorov不等式,讨论了两两NQD阵列的加权和在Ces?ro一致可积、(H1)或(H2)条件下的L2-收敛性,改进并推广了鞅差阵列加权和的相应结果。
补充资料:积积
1.长久累积。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条