1) uniformly bounded set
一致有界集
2) uniform boundedness
一致有界
1.
By means of Galerkin approximation, uniform boundedness and dissipa tiveness of delay reaction-diffusion equations are studied.
使用Galerkin逼近的办法,探讨时滞反应扩散方程解的一致有界性和耗散性。
2.
The authors investigate global properties and uniform boundedness of impulsive differential equations with variable times using comparison principle.
运用比较原理研究了具有可变脉冲时刻的脉冲微分方程解的整体性质,给出了解一致有界的充分条件。
3.
By using Liapunov functional equation and Razumikhin skill,the uniform boundedness and uniformly final boundedness of Volterra calculous equation s solution were studied and their sufficient conditions were given as well.
利用Liapunov泛函方程和Razumikhin技巧,研究Volterra积分微分方程解的一致有界性与一致最终有界性。
3) uniform boundness
一致有界
1.
Under appropriate conditions, using some prior estimate s techniques of Holder inequality, comparison principle of ODE, Gagliard-Nirenberg , Poincare inequality, Gronwall inequality and imbedding theorem, we obtain the global existence and uniform boundness of solutions.
本文利用抛物型方程解的先验估计方法给出了一类强耦合系统解的整体存在性及一致有界性。
2.
Under the appropriate conditions,using some prior estimate s techniques of Hlder inequality,comparison principle of ODE,Gagliard-Nirenberg,Poincaré inequality,Gronwall inequality and imbedding Theorem,we obtain the global existence and uniform boundness of solutions.
考虑一个耦合抛物系统的初边值问题,通过利用H lder不等式,常微分方程的比较原理,Nirenberg-Gagliard不等式以及嵌入定理等先验估计的技巧给出了这类系统解的整体存在性及一致有界性。
3.
A uniform boundness theorem for the convergent and uniform (R) integrable sequence of function is given.
给出了收敛的一致(R)可积函数列的一致有界性定理,并指出一致有界是收敛的(R)可积函数列一致(R)可积的必要条件,但不是充分条件。
4) uniformly bounded
一致有界
1.
Using multiple Lyapunov functions,a sufficient condition is derived to ensure that the switched nonlinear systems are uniformly bounded and uniformly ultimate bounded.
基于李雅普诺夫函数方法,给出了无激励非线性切换系统一致有界和一致最终有界的充分条件。
2.
Let (f n) ∞ n=1 be a sequence of function on the bounded closed interval ,We proved that the conclusion of Arzela s Theorem is also true if (f n) ∞ n=1 is weakly uniformly bounded and not uniformly bounded on .
证明了在Arzela定理中 ,将函数列 (fn) ∞n =1在一闭的有界区间 [a ,b]上一致有界减弱为“弱一致有界”时 ,定理的结论仍成
3.
We establish the week laws and strong laws of large numbers by using the uniformly bounded conditions.
利用一致有界条件,建立了弱大数定律和强大数定律。
5) Uniform bounded
一致有界
1.
We set up week laws of large numbers by using the uniform bounded condition.
利用一致有界条件,建立弱大数定律,改进了目前的某些结果,并找到弱大数定律与强大数定律的内在差别。
2.
A criteria of the uniform boundedness and uniform ultimate boundedness and global asymptotic stability of solution is obtained by applying Lyapunov functional method and matrix analysis technique.
利用Lyapunov泛函方法和矩阵分析技巧,得到了系统的解是一致有界和一致最终有界及全局渐近稳定性的判别准则。
6) uniform bound
一致有界
1.
The degree of approximation of uniform bounds positive linear operators in Lψ spaces is studied.
研究一类与Lp空间相关的Banach空间Lψ中的一致有界正线性算子列的逼近阶,得到了相应的Ko-rovkin量化定理。
补充资料:发光地寄色界无色界天乘
【发光地寄色界无色界天乘】
谓三地菩萨,明修八禅定行,同于色界四禅,无色界四空处,故云发光地寄色无色界天乘。(八禅定者,色界、无色界各四禅定也。四禅者,初禅、二禅、三禅、四禅也。四空者,即空处、识处、无所有处、非非想处也。)
谓三地菩萨,明修八禅定行,同于色界四禅,无色界四空处,故云发光地寄色无色界天乘。(八禅定者,色界、无色界各四禅定也。四禅者,初禅、二禅、三禅、四禅也。四空者,即空处、识处、无所有处、非非想处也。)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条