1) spherical asymptote
球面渐近线
2) spherical evolute
球面渐屈线
1.
In the paper,the spherical evolute by the geodesic distance on the unit sphere is defined and some of its properties are investigated.
本文利用单位球上的测地距离定义了球面渐屈线,并研究了球面渐屈线的一些性质,同时按照Bruce J。
3) spherical involutes
球面渐开线
1.
The paper ends with an exposition of the relation between the number of spherical involutes on a complete spherical surface ( Z ) and the ratio of the sphere radius to that of the cone base Rr .
从图解法的观点来研究绘制圆锥渐开面的三视图及其展开图的方法,并讨论了完整球面上球面渐开线的支数Z与球半径和圆锥底面半径之比R/r的关
4) spherical involute
球面渐开线
1.
During the modeling process,spherical involute was established directly by equations to guarantee the accuracy of tooth profiles,which provided accurate model for consequent finite element mechanism calculation of involute spiral bevel gears.
且在建模过程中直接利用方程建立球面渐开线,从而保证了齿形的准确性,为后续直齿锥齿轮的有限元力学计算提供了精确的模型。
5) asymptote
[英]['æsimptəut] [美]['æsɪm,tot]
渐近线,渐近
6) spherical involute tooth profile
球面渐开线齿廓
补充资料:渐屈线
平面曲线c1上每点的曲率中心的轨迹c2称为曲线c1的渐屈线,曲线c1称为曲线c2的渐伸线。渐屈线c2上各点的切线是渐伸线c1的法线。在平面上一条曲线的渐屈线只有一条,但渐伸线有无限多条。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条