说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 集论的运算
1)  set theoretic operation
集论的运算
2)  sets operations
集合的运算
3)  law of operations onsets
集合运算的规律
4)  Lattice-theoretical difference operation
格论的差运算
5)  integrated computation
集成运算
6)  set operation
集合运算
1.
A new idea of searching sections in network based on set operation and its valid algorithm
基于集合运算的路段搜索思想及其算法实现
2.
Then,the new single solid was generated by using the set operation between the joint instance and the single solid.
利用实例和单一实体的碰撞测试,得到连接实例和脱节实例,然后进行连接实例与单一实体的集合运算生成新体,再通过脱节实例与连接实例碰撞测试得到新的连接实例,从而生成正确的结果实体。
3.
The set operation of 2D drawings (union, intersection and subtraction) is an important foundation of design and hiding of 2D drawings, modeling of mechanical parts and generation of the tool path.
二维图形的并、交、差等集合运算是二维图形的设计、图形消隐处理、零件的三维造型及数控加工编程中刀具轨迹生成等的重要基础。
补充资料:集合运算


集合运算
operations of set

J一he yunsuan集合运算(叩erations ofset)从已知集合获得新集合的常用方法。 在讨论某类问题时,通常有一个含有所涉及的全部元素之固定集合。称为全集或空间,常用U表示,其它集合全是U的子集。假定A与B为集合。 并A与B的并集为集合}x}xeA或xeB},记为AUB。 交A与B的交集为集合{x}x〔A且x任B},记为AnB。 差A与B的差集为集合}x}x任A且x氏B},记为A一B或A\B。 补A的补集为集合U一A,记为一A。 对称差A与B的对称差集为集合(A UB)一(A门B),记为A④B。 如果AnB=必,则称A与B不相交。 上述5种集合运算,可用图1所示的文氏图直观地表示,图中阴影部分为运算结果。 例l设U={2,3,5,7,11,13},A={2,5,7},B={2,3,7,11},则 AUB={2,3,5,7,11}。集.354·集馨日臀豁(a)八UB(b)A门B(c)A一B(d)A④B(e)一A 图1 A门B={2,7} A一B二{5} A④B={3,5,11} 一A={3,11,13}关于集合运算U,n和一,有以下基本定律:幂等律 AUA=A AnA=A交换律 AUB二BUA A门B=B门A结合律 (AUB)UC=AU(BUC) (A自B)门C=A门(B自C)分配律 AU(B自C)=(AUB)门(AUC) A自(BUC)=(A门B)U(A门C)同一律 AU必=A AnU=A零律 AUU=U An必二必互补律 AU一A=0 A自一A二必吸收律 AU(AnB)=A An(AUB)=A对偶律 一(AUB)=一An一B 一(A门刀)=一AU一B对合律 一(一A)=A集合运算的文氏图 广义并A的广义并为集合{二{有集合S任A 使x任S},记为UA。 当A={Al,…,A,}且Al,…,A。均为集合时, 则把UA记为A,UAZU…UA·或从入。 广义交若A共曰,则A的广义交为集合lxl 若S任A,则x任引,记为nA。 当A={A,,…,A,}且A卫,…,A,均为集合时, 则把nA记为A,门AZn…nA!或瓜A,。 幕集A的幂集为集合1引S里A},记为ZA或 护(A)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条