说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 半有序集
1)  semiordered set
半有序集
2)  poset
部分有序集,半序集
3)  partially ordered set
半序集
1.
There are a variety of known ways in which a partially ordered set P may be given a convergence.
在一个半序集中可以定义网的各种序收敛,本文讨论一个半序集P及其分割完备化?中序收敛的关系、P及其强收缩中序收敛的关系,以及直积中的序收敛。
2.
Basing on some characteristics of supremum and order convergence, a corollary of Zorn lemma is given in partially ordered set.
通过上确界及序列收敛的有关性质 ,给出了半序集上 Zorn引理的一个推
4)  semi-ordered set
半序集
1.
The existence of the minimal and maximal fixed points for order preserving set-valued operators on semi-ordered sets and semi-ordered topological spaces was analyzed.
讨论了半序集和半序拓扑空间中保序集值算子的最小与最大不动点的存在性。
2.
By introducing the concepts of the totally ordered quasicomplete set and totally ordered self-complete set in this paper, some existence theorems of coupled fixed point for mixed monotone mappings in semi-ordered set and its application are given.
本文通过引入全序拟备集和全序自备集概念,给出了半序集上混合单调映象的耦合不动点的若干存在性定理及其应用,它们包含半序Banach空间和半序拓扑空间上的许多相应结果作为特例。
5)  semiordered set
半序集
1.
In this paper,some definitions of the mixed monotonicity for set-valued operators in semiordered set are introduced and relation of monotonicities are discussed.
给出了半序集上集值算子的几种混合单调性定义 ,讨论了它们之间的关系 。
2.
Then using some propertis of the total ordered subset in semiordered set, the existence theorems of coupled fixed points and minimax coupled fixed points for mixed monotone set valued operators are given.
引入了集值算子的几种混合单调性定义 ,讨论了各种单调性之间的关系 然后利用半序集上的全序子集的某些性质 ,给出了混合单调集值算子的耦合不动点和极小极大耦合不动点的存在性定理 。
3.
By introducing the concepts of the lower increasing,upperincreasing ,total increasing and strong increasing for set valued operators and the concepts of totally ordered quasi complete set and totally self complete set in semiordered set ,the existence of fixed point for the set valued increasing operators composed of a single valued operator and a set valued operator is discussed.
通过引入集值算子的下增、上增、全增、强增和半序集上的全序拟备集、全序自备集等概念,讨论了由单值算子与集值算子复合而成的集值增算子的不动点的存在性,改进和推广了已有文献的某些结
6)  cac poset
cac半序集
1.
It is proved that if P is a cac poset, then D(P)={x∈P :there is a  maximal element y such as xy}=P .
证明了若 P是 cac半序集 ,则 D( P) ={x∈ P:存在 -极大元 y,满足 y x}=P,并对李伯渝的论文“The anti- order for caccc posets”( DiscreteMathematics,1 996,1 58:1 73- 1 84)的结论和证明作了简
补充资料:〖ZK(〗各证集说诸方备用并五脏六腑集论合抄〖ZK)〗


〖ZK(〗各证集说诸方备用并五脏六腑集论合抄〖ZK)〗


内科著作。1卷。原题清叶桂(天士)家传,撰年不详。此书汇集内科杂证70余种,方剂近200首。每证各为一论,阐明疾病性质、病因、症状、治则及方药。论后每引经说,概括病机。所列方药服法亦皆详备。又列“五脏六腑论”一章,引用《内经》、《难经》,逐一论述五脏六腑之形象、部位、表里关系、病症及治法。本书内容多录自《临证指南》,恐系后人伪托叶氏之作。现存抄本
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条