1) principal moment of inertia
主动惯量
2) principal moment of inertia
主转动惯量
3) principal axis of inertia
惯量主轴
1.
In rigid body mechanics, confirming the principal axis of inertia of rigid body is particularly important, its calculation can be made to be simplified and favorable to study the nature and movement law of rigid body.
刚体力学中,确定刚体的惯量主轴,可以简化计算,还有利于研究刚体的性质和运动规律,这样,如何确定刚体的惯量主轴就显得尤为重要。
2.
The principal axis of inertia of a rigid body are its symmetric axis,the rigid body is possessed of geometrical symmetry and its mass are well distributed or its mass are symmetrially distributed.
对于具有几何对称性且质量均匀分布或质量对称分布的刚体,其惯量主轴显而易见,即刚体的对称轴。
4) principal axes of inertia
惯量主轴
1.
The method to calculate principal axes of inertia by adjoint matrix of eigen ma-trix is given,examples are presented.
本文给出了用特征矩阵的伴随矩阵求惯量主轴的代数方法,并通过实例作了说明。
2.
This paper presents the eigen equation of inertial tensor expressed by the three principal invariants, which is an algebra-equation solution to calculate eigen value;proves that eigenvalue is the principal moments of inertia and that eigenvector is the principal axes of inertia;and discusses a certain method to calculate prinpal axes of inertia by adjoint matrix of eigen matrix.
本交给出了惯量张量用其三个主要不变量表示的特征方程,为求特征值提供了一种代数方程解法;论证了特征值即为主惯量,特征矢量即为惯量主轴;探讨了用特征矩阵的伴随矩阵求惯量主轴的方法,并用实例给予了说明。
5) principal moments of inertia
主惯量
1.
This paper presents the eigen equation of inertial tensor expressed by the three principal invariants, which is an algebra-equation solution to calculate eigen value;proves that eigenvalue is the principal moments of inertia and that eigenvector is the principal axes of inertia;and discusses a certain method to calculate prinpal axes of inertia by adjoint matrix of eigen matrix.
本交给出了惯量张量用其三个主要不变量表示的特征方程,为求特征值提供了一种代数方程解法;论证了特征值即为主惯量,特征矢量即为惯量主轴;探讨了用特征矩阵的伴随矩阵求惯量主轴的方法,并用实例给予了说明。
6) Moment of inertia
转动惯量
1.
The application of moment of inertia real time compensation in the rewinder web tension control;
转动惯量实时补偿在复卷机纸幅张力控制中的应用
2.
Measuring method and error analysis on moment of inertia of complex shaped components;
复杂形状构件转动惯量的测量方法及误差分析
补充资料:水轮发电机转动惯量
水轮发电机转动惯量
rotational inertia of hydrogenerator
shullun fodlonl一zhuondong guonl旧ng水轮发电机转动惯.(rotational inertia ofhydrogenerator)水枪发电机转动惯盆是发电机转动部分的重tG与其惯性直径D平方的乘积,用GDZ表示,也称为转动部分的飞轮力矩。 转动惯量表明电力系统出现大干扰时,水轮发电机组转动部分保持原来运动状态的能力,所以对电力系统的暂态过程和动稳定有很大影响。转动惯t对水轮机调节保证计算也有很大影响,转动惯t大,机组甩负荷后的转速上升率如保持一定值,则可允许较大的压力上升率,从而可以减小引水钢管直径或允许增加钢管长度,甚至不设调压井.但增大转动惯t将增加发电机重量和造价,也延长了机组的起动时间。 当水轮发电机基本尺寸确定后,转动惯量GDZ值可按下列经验公式计算 GDZ=kD户·”1.式中D为定子铁芯内径,m‘l:为定子铁芯长度,m;h为经验系数,一般可按表选取。 经脸系傲裹┌────────┬────┬────┬────┐│机纽转迫(r/成.) │<100 │100~375 │>375 │├────────┼────┼────┼────┤│经玻系狱《k) │5 .2~5.5│5.1~5。3│4.5~5.0 │└────────┴────┴────┴────┘ 大容量低转速水轮发电机组的转动惯t最大已达450000 tf·mZ(4410 kN·mZ)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条