1) positive semidefinite form
半正定型
2) positive semidefinite quadratic
半正定二次型
1.
The conditions of positive semidefinite quadratic form are given according to its definition,and some properties of postive semidefinite matrix are given according to its definition in the paper.
从半正定二次型的定义出发 ,推导出与其定义等价的几个条件 ;并且根据半正定矩阵的定义 ,推导出半正定矩阵的若干性
3) Hermite positive semidefinite
Hermite半正定
1.
The complex matrix solutions with Hermite part positive semidefinite and Hermite positive semidefinite for the matrix equation(A*XA,B*XB)=(C,D) is investigated.
研究了复矩阵方程(A*XA,B*XB)=(C,D)有Hermite部分是半正定的解与Hermite半正定解的可解性条件。
5) semi-positive definite
半正定
1.
This paper investigates the constraned singular semi-positive definite linear systems Ax=b,(x∈L).
本文研究约束的奇异半正定线性方程组Ax=b,x∈L的迭代解法,给出了著名的Ke ller定理的新证,并据之给出了已有的投影迭代法的简证。
6) positive semi-definite
半正定
1.
Using Toeplitz matrix,the feature that the sum of the length of two sides is larger than that of the other side and the linearity transformation, the positive semi-definite sextic polynomial are derived, that is,L m(m=1,2,3,4,5),M n,B n(n=1,2,3,4) and the concrete expressions of G 1,G 2.
应用Toeplitz矩阵、三角形两边之和大于第三边的性质与线性交换 (x ,y ,z) =(a ,b ,c)θ(0 ) ,给出了半正定三元六次型Lm(m =1,2 ,3,4 ,5 ) ,Mn,Bn(n =1,2 ,3,4 )和G1,G2 的具体表达式 ,然后给出主要结果Lm,Mn,G1,G2 ,B1,B2 及B3 +B4∈Q(A) 。
2.
The author introduce the method of applying positive semi-definite quadratic form to prove inequality by giving several examples.
通过给出几个实例 ,介绍了利用二次型的半正定性证明不等式的方法 。
3.
A sufficient and necassary condition and the general form of solutions for the inverse problem of the system of quaternion linear equations Ax=b to have solutions of positive semi-definite matrix and positive semi-definite conjugate matrix are derived.
证得了四元数矩阵为半正定的充要条件,得到四元数线性方程组AX=b的反问题有半正定阵解、半正定自共轭阵解的充要条件及解的一般形式。
补充资料:输出反馈(见线性二次型次优控制)
输出反馈(见线性二次型次优控制)
output feedback
3h日c卜口fon以以{输出反馈型次优控制。(output王eedbaek)见线性二次
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条