1) norm of a matrix
阵的范数
2) Matrix norm
矩阵的范数
3) the norm of norm matrix
模阵的范数
4) spectral norm of matrix
矩阵的谱范数
1.
In the paper we study numerical radius, spectral norm of matrix, matrix norm and theirs relationship based on [1] and [2].
本文在[1]与[2]的基础上研究了数值半径,矩阵的谱范数和矩阵范数之间的关系,又给出了一些新的不等式。
5) bounds of matrix norm
矩阵范数的界
6) induced matrix norm
导出的矩阵范数
补充资料:Luxemburg范数
Luxemburg范数
Luxemburg nonn
L峨曰血叱范数〔I一血叱~;J如盆c服6yP住肋p-Ma] 函数 ,‘x!.(M,一、{*:*>o,丁、(,一’x(:))‘:‘1}, G这里M(u)是关于正的u递增的偶凸函数, 怒“一’M(u)一忽u(M(u))一,一0,对“>0,M(“)>0,且G是R”中的有界集.此范数的性质曾由W.A.J.h以油比飞〔11作了研究.L~b鸣范数等价于O正ez范数(见0口厄空间(C旧允2 sP创芜)),且 I{x}I(,)簇1 lx}I,蕊2 11 x 11(、).如果函数M(u)和N(u)是互补(或互为对偶)的(见O市口类(Or比zc地”‘、则 ,,·,,(一sun{)·(!,,‘!,“!:,,,,,《一‘,}·如果z‘(t)是可测子集E CG的特征函数,则 !l:二11‘M、-一下尖二一. ““启”‘川M一’(l/n篮‘E)’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条