说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非平面图形
1)  nonplanar graph
非平面图形
2)  Nonplanar diagram
非平面图
3)  plane figures
平面图形
1.
A method for the random angly rotation of plane figures in the operation of electrical discharge wire-cutting machine was discussed.
对于一些不规则图形,可先对加工指令表达的平面图形进行坐标旋转变换。
2.
This article employs the method of element changing in definite integral to spread the dimension formula of plane figures.
利用定积分的换元法 ,推广了平面图形的面积公
4)  plane figure
平面图形
1.
The formation of the plane figure path of the drilling and milling machine controlled by macrocomputer over mill machining;
微机控制钻铣床平面图形铣削加工轨迹的形成
2.
In this paper,the area ratio of plane figure affine transformation in space is investigated,and the transformation equation of λ multiple of area is got , the area change of plane figure under affine transformation in space is studied, a important property of three axis ellipsoid is given and proved.
探讨了空间场的仿射变换下平面图形的面积比,推导出λ倍积变换方程式,进而探讨了空间场的仿射变换下平面图形面积的变化规律,给出并证明了三轴椭球体的一个重要性质。
3.
From commonly used equation of calculating plane figure quadrature, formulas of calculating plane figure quadrature by applying curve parametric equation can be deduced.
从由曲线普通方程求平面图形面积的公式出发推出在各种情形下由曲线参数方程求平面图形面积的公式。
5)  planar graph
平面图形
1.
The cube formed after cutting one part off the same planar graph in different ways of motion and its method of calculation are introduced.
介绍了同一平面图形按不同方式运动截取一部分形成的立方体的图形及计算方法。
2.
Through the comparison and analysis of four examples,this paper draws the common methods,procedures and thinking paths of using the definite integral in the calculation of the area of some planar graphs and the static pressure of the liquid.
通过4个例题的对比分析,得出定积分在计算一些平面图形面积和液体静压力的一般方法、步骤以及思考路径。
6)  plane graph
平面图形
1.
Velocity formula and acceleration formula of point in the plane graph is proved by means of complex vector,and a simple method to obtain the velocity and acceleration is proposed.
研究刚体的平面平行运动 ,用复矢量方法推导了平面图形内各点的速度、加速度关系式 ,给出了求解平面图形内各点速度、加速度的简捷方法。
补充资料:非想非非想处天
1.佛教语。即三界中无色界第四天。此天没有欲望与物质﹐仅有微妙的思想。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条