1) lobachevskian geometry
双曲几何学
2) hyperbolic geometry
双曲几何
1.
The paper introduces the one of non- Euclidean geometry - hyperbolic geometry into special theory of relativity.
本文试图将非欧几何之——双曲几何引入狭义相对论。
2.
It is proved that relativistic velocity make up of Bltrami-Klein model of hyperbolic geometry.
用光速不变原理直接导出洛伦兹速度变换式 ,并证明相对论性速度构成双曲几何的Beltrami Klein模型 。
4) twisted solid the geometric
扭曲几何学
5) geometry
[英][dʒi'ɔmətri] [美][dʒɪ'ɑmətrɪ]
几何;几何学
6) bent geometry
弯曲几何
1.
The calculated results show that titled compounds Ⅰ and Ⅲ have a trans-bent geometry,Ⅱ has a bent geometry,Ⅳ has a planar geometry.
计算结果表明,标题物Ⅰ和Ⅲ为反式弯曲几何构型,Ⅱ为弯曲几何构型,Ⅳ为线性平面分子。
2.
The calculated results show that titled compounds Ⅰ and Ⅲ have a trans-bent geometry,Ⅱ and Ⅳ has a bent geometry.
计算结果表明,标题物Ⅰ和Ⅲ为反式弯曲几何构型,Ⅱ和Ⅳ为弯曲几何构型。
3.
The calculated results show that all titled compounds Ⅰ-Ⅵ have a trans-bent geometry.
计算结果表明,全部标题物Ⅰ到Ⅵ为反式弯曲几何构型。
补充资料:双曲几何学
双曲几何学
hyperbolic geometry
双曲jL何学【hy洲叙血罗叨州打;r.oep6o月.叼ee二a,r份MeTP。,l 同Jlo6a,e.e姗.几何学(助加c址铭幼罗优朋try).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条