1) geometric difference equation
几何差分方程
2) hypergeometric polynomial
超几何微分方程
1.
We also proved that the problem of solving BAE can be transformed into the problem of finding the roots of a hypergeometric polynomial,which was much simpler.
在具体求解过程中,利用超几何微分方程十分有效地简化了计算。
3) geometric partial differential equation
几何偏微分方程
1.
First,it introduces a first-order energy functional,then minimizes it to derive a second-order geometric partial differential equation(GPDE) in the level-set formulation.
首先引入一个一阶能量范函,然后通过对其极小化诱导出一个水平集形式的二阶几何偏微分方程,从而将曲面变形过程转化为一个三维体上的隐式模型的演化过程。
4) geometrical equation
几何方程
1.
On the basis of the hypothesis of straight normal line, geometrical equations about finlte deformation analysis of shells with small shear are exactly derived by means of continuum mechanics methods.
对壳体只采用直法线假设,应用连续介质力学方法,严格地推证有剪切的壳体有限变形的几何方程。
5) geometric equation
几何方程
1.
The paper deduced geometric equation based on the physical concept of engineering linear and shear strain and the characteristics of "axial symmetry" and "large deformation".
从工程线应变和工程切应变的物理概念出发,根据"轴对称"和"大变形"的特点,推导出相应的几何方程,另导出大变形条件下的体积不变定律。
6) hypergeometric equatin
超几何方程
1.
In the frame of quantum mechanics,the equation to describe the particle motion was reduced to the hypergeometric equatin by this potential.
在量子力学框架内,把电子的Schrodinger方程转化为超几何方程,用系统参数和超几何函数严格地求解了电子的本征值和本征函数,并以Ga1-xAlxAs-GaAs-Ga1-xAlxAs量子阱为例计算了电子的带内跃迁。
2.
In the frame of quantum mechanics, Schrodinger equation to describe the particle motion is reduced to the hypergeometric equatin by this potential.
鉴于“方形”势阱描述量子阱中的空穴运动行为过于简单、理想,引入了反比相关的双曲余弦平方势,并在量子力学框架内,利用这个相互作用势把空穴的Schrodinger方程化为了超几何方程,用系统参数和超几何函数严格地求解了空穴的本征值和本征函数,并以Ga1-xAlxAs-GaAs-Ga1-xAlxAs量子阱为例,计算了阱内的空穴跃迂。
补充资料:微分方程的差分方程逼近
微分方程的差分方程逼近
approximation of a differential equation by difference equations
微分方程的差分方程通近【app拟。mati.ofa山价犯n-ti习闪姗柱.by山血魂.理equa西姗;即即肠。砚田朋.朋巾卜碑四.别吸.。印冲.旧e朋,pa3I.ecTll目M] 微分方程用关于未知函数在某种网格上的值的代数方程组的逼近,当网格的参数(网络、步长)趋于零时可使得逼近更加精确. 设L(Lu可)是某个微分算子,几(L声。=几,。。任叭,人“凡)是某个有限差分算子(见徽分算子的差分算子通近(aPProximation of a dilferential operator by dif-feren沈。perators”.如果算子L、关于解u逼近算子L,其阶为p,即如果 }}Lh[u]*I}汽=o(hp),那么有限差分式L声、二0(o任凡)称为关于解“对微分方程Lu=O的P阶逼近. 构造有限差分方程L声*=0关于解u逼近微分方程Lu=0的最简单例子是将Lu的表达式中每个导数用相应的有限差分来代替. 例如,方程 _子“.,、血._,_八_一n Lu三书舟+P(x)于+q(x)u=U ~“一dxZr‘~产dxl‘’可用有限差分方程 L‘“‘三生理二丛吐丛二+ h‘ U~丰I一U,_I_ +尸(x们厂竺二兹巴几十,(x功)u朋一o作二阶精度逼近,其中网格几。和几;由点x.“。h组成(m是一整数),“.是函数u*在点x.的值.又,方程 au aZu L“三共牛一斗冬二0, --一ar ax,可用关于光滑解的两种不同的差分近似来逼近: _.月+1_”月气.月上.” 一门、“nt4用“用十l‘“阴l“用一I八 于九‘(撇式格式(exPlie,}seheme))和! “几’l一嗽试,‘l}一翔二,曰衅,‘从 拭’价二一一-一—一了一--一一几,(隐式格式(一mf)liczt scheme)),其中网格D*。和D*:由点(x。,甲=(川入,似)组成,:二rhZ,r二常数,巾和n是整数,。二是函数翻、在网格点(x,,t。)的值.存在这样的有限差分算子L,它对微分算子L的逼近,仅关于方程L。一0的解。特别好,而关于其他函数则差一些.例如,算一子L*L*U。三兴,·卜·夸卫一尹{刁内队引〔其中汀二·。州一随甲‘气))关f任意的光滑函数。(*)是算 广L- d仪 L“一…一甲〔戈,“)Z(工) 办的一阶逼近(_关于八)、而关于方程大u=O的解却是二阶逼近(假定函数:,充分光滑)在利用有限差分方程与。。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条