1) extended plane
扩张平面
2) trivial extension
平凡扩张
1.
After defining the k-functor F over X, proves that the trivial extension categoty X∝F is also G-graded.
在定义C上k-函子F的基础上,证明了平凡扩张范畴C∝F仍为k上G-分次范畴;当F为X上分次k-函子时,给出了一族范畴同构,即r∈N(G),有(C#G)∝(F#r)(C∝F)r#G。
2.
We investigate the semicommutative properties of those rings under the reduced condition which are more generalized than trivial extensions.
讨论了在约化条件下,比平凡扩张更广泛的一类扩张环的半交换性。
3.
Given a c commutative ring R , obtains some conditions such that the skew power series ring R[[x,α]] and the trivial extension R∝M are also c commutative,and give examples to show these conditions are necessary.
对于 c-可换环 R,给出条件使得斜幂级数环 R[[x,α]]和 R的平凡扩张 R∝Μ也为 c-可换环 ,并用例子说明这些条件是必要的 。
3) translation of extension
扩张平移
1.
In the paper, We have discussed the problem of translation of extension of an algebraic number field and proved the property of existence of translation of extension for a given decomposition group.
讨论了代数数域的扩张平移问题 ,证明了对给定的分解群的扩张平移的存在性 ,加强了 Artin的一个存在性定理的结
4) cylindrical extension
柱面扩张
1.
Considering the dependence of the evidence on hypothesis based on cylindrical extension,the present paper gives the explanation of the constraint propagation in inferno model and verifies that the satisfied conditions by constraint propagation equation are the probabistic capacity under the meaning of cylindrical extension.
从柱面扩张的角度考虑证据与假设之间的依赖关系,给出Inferno模型中约束传播关系的解释,并证明约束传播公式所满足的条件是柱面扩张意义下的概率相容。
5) The expanded surface area
扩张面积
补充资料:极大扩张和极小扩张
极大扩张和极小扩张
maximal and minimal extensions
极大扩张和极小扩张匡.习的司出目.公油抽lex妇心.旧;MaKcl.Ma刀‘.oe H Mll.”M田.妇oe PaC山一Pe皿朋] 一个对称算子(s笋nr贺苗c opemtor)A的极大扩张和极小扩张分别是算子牙(A的闭包,(见闭算子(cfo“月。详mtor”)和A’(A的伴随,见伴随算子(呐。int opera.tor)).A的所有闭对称扩张都出现在它们之间.极大扩张和极小扩张相等等价于A的自伴性(见自伴算子(义休.adjoint operator)),并且是自伴扩张唯一性的必要和充分条件.A.H.J’Ior朋oB,B.c.lll户、MaR撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条