1) everywhere convergent sequence
处处收敛序列
2) nowhere convergent sequence
无处收敛序列
3) sequence convergent almost everywhere
几乎处处收敛列
4) everywhere converge
处处收敛
1.
The order of operation can be exchanged with integral operation and derivation operation,then the concepts of almost everywhere convergence and everywhere convergence are introduced.
函数列{xn}的收敛性,说明:函数列的收敛域一般是定义域的子集;函数列虽然不一致收敛,但其极限函数可以是连续的;极限运算也可以与积分运算交换运算及求导运算交换运算的次序,并由此引出了函数列一致收敛与几乎处处收敛的概念,论述了叶果洛夫(Егоров)定理的建立与证明思路,充分说明了函数列{xn}在分析数学中的作用,诠释了数学概念、抽象与简单的辩证关系。
2.
To make sure under what circumstances everywhere converge can be converted into uniform convergence,a typical counter-case has to be analysed.
在分析数学中一致收敛的重要性及几乎处处收敛不一定能够一致收敛。
5) "convergence pseudo-almost everywhere"
伪几乎处处收敛基本列
6) convergent sequence
收敛序列
1.
With the aid of the geometry method,this paper presents the estimated values of the convergent reminders of certain important convergent sequences.
对某些重要的收敛序列,借助几何直观方法估计了它们的收敛余项。
2.
In general,the convergent sequence and bounded set are concepts only in topological spaces.
收敛序列和有界集一般是拓扑空间中的概念 ,文章首先引入序列收敛 C和 L* -空间 (给出某种序列收敛关系的向量空间 ) ,然后在其中定义有界集 。
3.
Main results are:① every implication open(closed)ball with radius not less then the norm of the heart point is an MP-filter;② every convergent sequence has unique limit;③ every convergent sequence is a Cauchy sequence;④ if a Cauchy sequence {xn} has a subsequence which converges to a point x,then {xn} converges to x too.
证明了:①每一半径不小于球心范数的蕴涵开(闭)球都是MP滤子;②每个收敛序列都有唯一的极限;③每个收敛序列都是Cauchy列;④如果一个Cauchy列{xn}的某个子列收敛于点x,则该Cauchy列本身也收敛于点x。
补充资料:处处
1.定居﹐安居。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条