1) conditional gradient method
条件梯度法
3) Preconditioned Conjugate-Gradient Technique
预条件共轭梯度法
1.
Application of Preconditioned Conjugate-Gradient Technique to the Finite-Difference Frequency-Domain Method for Analysis of the Scattering by Infinite Cylinder;
预条件共轭梯度法在频域有限差分法分析二维柱体电磁散射问题中的应用
2.
The finite-difference frequency-domain method with preconditioned conjugate-gradient technique is presented for three-dimensional electromagnetic scattering problems.
引入预条件共轭梯度法,提出了结合频域有限差分法分析三维电磁散射问题。
4) preconditioned conjugate gradient method
预条件共轭梯度法
1.
Application of the preconditioned conjugate gradient method to some electromagnetic radiating and scattering problems;
预条件共轭梯度法在辐射和散射问题中的应用
2.
Application of preconditioned conjugate gradient method to finite element reanalysis of arch dams
预条件共轭梯度法在拱坝有限元重分析中的应用
3.
A mixed technique of moment method(MOM), preconditioned conjugate gradient method(PCG) and fast Fourier transform(FFT) is presented to deal with the 2D scattering from a conducting strip of electrically large size.
用矩量法 (MOM)、预条件共轭梯度法 (PCG)和快速傅里叶变换 (FFT)的混合技术分析了电大尺寸导带的二维散射问题 。
5) preconditioned conjugate gradient method
预条件共轭梯度法(PCG)
6) prediction biconjugate gradient
预条件双共轭梯度法
补充资料:共轭梯度法
又称共轭斜量法,是解线性代数方程组和非线性方程组的一种数值方法,例如对线性代数方程组
A尣=??, (1)式中A为n阶矩阵,尣和??为n维列向量,当A对称正定时,可以证明求(1)的解尣*和求二次泛函 (2)的极小值问题是等价的。此处(尣,у)表示向量尣和у的内积。由此,给定了初始向量尣,按某一方向去求(2)取极小值的点尣,就得到下一个迭代值尣,再由尣出发,求尣等等,这样来逼近尣*。若取求极小值的方向为F在尣(k=1,2,...)处的负梯度方向就是所谓最速下降法,然而理论和实际计算表明这个方法的收敛速度较慢,共轭梯度法则是在 尣处的梯度方向r和这一步的修正方向p所构成的二维平面内,寻找使F减小最快的方向作为下一步的修正方向,即求极小值的方向p(其第一步仍取负梯度方向)。计算公式为再逐次计算
(k=1,2,...)。可以证明当i≠j时,从而p,p形成一共轭向量组;r,r,...形成一正交向量组。后者说明若没有舍入误差的话,至多 n次迭代就可得到(1)的精确解。然而在实际计算中,一般都有舍入误差,所以r,r,...并不真正互相正交,而尣尣,...等也只是逐步逼近(1)的真解,故一般将共轭梯度法作为迭代法来使用。
近来在解方程组(1)时,常将共轭梯度法同其他一些迭代法结合作用。特别是对病态方程组这种方法往往能收到比较显著的效果。其方法是选取一对称正定矩阵 B并进行三角分解,得B=LLT。将方程组(1)化为
hу=b, (3)此处y=lT尣,b=l-1??,h=l-1Al-T,而。再对(3)用共轭梯度法,计算公式为
(k=0,1,2,...)适当选取B,当B 很接近A时,h的条件数较之A大大减小,从而可使共轭梯度法的收敛速度大为加快,由一些迭代法的矩阵分裂A=M -N,可选取M 为这里的B,例如对称超松弛迭代(SSOR),强隐式迭代(SIP)等,这类方法常称为广义共轭梯度法或预条件共轭梯度法,它也可用于解代数特征值问题。
参考书目
冯康等编:《数值计算方法》,国防工业出版社,北京,1978。
A尣=??, (1)式中A为n阶矩阵,尣和??为n维列向量,当A对称正定时,可以证明求(1)的解尣*和求二次泛函 (2)的极小值问题是等价的。此处(尣,у)表示向量尣和у的内积。由此,给定了初始向量尣,按某一方向去求(2)取极小值的点尣,就得到下一个迭代值尣,再由尣出发,求尣等等,这样来逼近尣*。若取求极小值的方向为F在尣(k=1,2,...)处的负梯度方向就是所谓最速下降法,然而理论和实际计算表明这个方法的收敛速度较慢,共轭梯度法则是在 尣处的梯度方向r和这一步的修正方向p所构成的二维平面内,寻找使F减小最快的方向作为下一步的修正方向,即求极小值的方向p(其第一步仍取负梯度方向)。计算公式为再逐次计算
(k=1,2,...)。可以证明当i≠j时,从而p,p形成一共轭向量组;r,r,...形成一正交向量组。后者说明若没有舍入误差的话,至多 n次迭代就可得到(1)的精确解。然而在实际计算中,一般都有舍入误差,所以r,r,...并不真正互相正交,而尣尣,...等也只是逐步逼近(1)的真解,故一般将共轭梯度法作为迭代法来使用。
近来在解方程组(1)时,常将共轭梯度法同其他一些迭代法结合作用。特别是对病态方程组这种方法往往能收到比较显著的效果。其方法是选取一对称正定矩阵 B并进行三角分解,得B=LLT。将方程组(1)化为
hу=b, (3)此处y=lT尣,b=l-1??,h=l-1Al-T,而。再对(3)用共轭梯度法,计算公式为
(k=0,1,2,...)适当选取B,当B 很接近A时,h的条件数较之A大大减小,从而可使共轭梯度法的收敛速度大为加快,由一些迭代法的矩阵分裂A=M -N,可选取M 为这里的B,例如对称超松弛迭代(SSOR),强隐式迭代(SIP)等,这类方法常称为广义共轭梯度法或预条件共轭梯度法,它也可用于解代数特征值问题。
参考书目
冯康等编:《数值计算方法》,国防工业出版社,北京,1978。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条