1) approximate differentiability
近似可微性
2) approximate total differentiability
近似全可微性
3) Approximability
可近似性
4) approximate reachability
近似可达性
5) Approximate controllability
近似可控性
1.
In this paper the density of solutions of the operator equation y=y 0+LF(y)+LH(v) (L,H are linear operators and F is nonlinear) is discussed by Banach fixed point theorem and Schauder fixed point theorem, then by the gotten results the approximate controllability of the semilinear systemx′(t)+A(t)x(t)=f(t,x(t))+Bu(t)on Banach space is studied.
本文利用Banach不动点定理和Schauder不动点定理研究如下算子方程解的稠密性:y=y0+LF(y)+LH(v)(其中,L、H为线性算子,F为非线性算子),然后,利用所得结论讨论Banach空间内的半线性系统:x′(t)+A(t)x(t)=f(t,x(t)+Bu(t)的近似可控
6) inapproximability
不可近似性
补充资料:近似连续性
近似连续性
approximate continuity
近似连续性【aPpro万mate continulty;..甲邢,砚ar~I.eupep‘.曰oc几] 连续性概念的一种推广,其中普通极限用近似极限(aPproximate limit)代替.函数f(x)称为在点x。是近似连续的(approximately continuous),是指 lim aPf(x)=f(x。)· X弓xo在最简单的情形,f(x)是n维Euclid空间上的实值函数(一般地,它是向量值函数).下面的定理成立.1)实值函数f(x)在集E上Lebesgue可测的充要条件是,f在E上几乎处处近似连续(见C代naHoB一Denjoy定理(Stepanov一Denjoy theorem)).2)对于任意的有界Lebesgue可测函数f(x),在它的每个近似连续点x。,下式成立: 。:去~lf(二)J;一f(二。), 两风R)穿‘”’一尸其中拜是n维Lebesgue测度,R是包含x。的非退化的n维线段,而p为它的直径.【补注】有关其他参考文献,见近似极限(approximatelimit).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条