1) alternating series test
交错级数检验
2) alternative test
交错检验
3) alternative series
交错级数
1.
This paper probes into the distinguish method about the convergence of the alternative series,and gives an easy distinguish method about the convergence of the alternative series,considering the characteristic of the alternative series,which as a limited form,is easy to operate.
文章就数学分析中交错级数敛散性的判别法加以讨论,结合交错级数自身的特性,提出了交错级数敛散性的一个判别定理。
2.
We obtain a convergence theorem of alternative series differing from Leibniz test by discussing and analyzing the convergence of a kind of alternative series,and generalize the using limits of J.
讨论和分析了一类交错级数的收敛问题,给出了异于莱布尼兹判别法的关于交错级数的一个收敛定理。
3.
In this paper,a new criterion on convergence and diverge of a kind of alternative series is given.
本文给出了判别一类交错级数敛散性的一种新方法。
4) interlace series
交错级数
1.
Solution of interlace series type linear differential equation containing negative second power function and arrangement number;
负二次幂函数与排列数的交错级数型线性微分方程
2.
The solution of the interlace series type linear even differential equation of contain negative twice power function and arrangement number;
负二次幂交错级数型线性齐次微分方程
3.
Throush the interlace series type linear differential equation,coefficient containing three negative number of times,power function and arrangement number can be changed into the linear differential equation of successive integral.
通过把系数含有负三次幂函数与排列数的交错级数型线性微分方程化为可逐次积分的线性微分方程,找出了求这类方程通解的方法与理论,把所得定理给出了严格的证明,并将其推广,同时通过实例介绍了它的应用。
5) alternate series
交错级数
1.
This paper gives a generalized theorem of Leibniz s decision method for the convergence of alternate series.
对交错级数收敛性判别法中的著名定理──Leibniz判别法进行了推广。
2.
This paper extands the Leibniz theorem on the convergence of alternate series and presents a large number of methods to judge the convergence of alternate series.
对交错级数审敛法中的莱布尼兹定理进行了推广。
3.
This paper discuss the convergence of alternate series,and improve a new convergence criterion of alternate series.
讨论了交错级数的敛散性,改进了[1]中关于交错级数新的审敛准则,并给出了交错级数另外新的审敛准则,并将这些审敛准则推广到更一般的形式。
6) interlock series
交错级数
1.
Interlock series Leibniz discrimination is the main method and foundation in justifying the restraining and spreading of an interlock series.
交错级数Leibniz判别法是一个判别交错级数敛散性的主要方法和依据,但不可忽视的是它并不是对任何交错级数都有效,换言之,若交错级数满足其条件时必收敛,但其条件不完全具备时,级数未必发散。
2.
Series convergence of the mathematical analysis of discriminance is an important teaching material,and interlock series is a kind of special and important series.
对已有交错级数的敛散性的判别法加以了综合、比较,结合交错级数自身的特性,给出了交错级数敛散性的一个判别模式。
补充资料:交错级数
交错级数
alternating series
交错级数【目加几吐加9 Series:aa.xo叼epe兀y.贝业cap‘两] 各项符号正负相间的无穷级数: u一。2+…+(一1丫一1‘+…,吟>0.如果一个交错级数的各项是单调减小的(u,十、<气),并且趋向于零(h叭_.“.=0),则这个级数是收效的(抉ibnitZ定理(LeibnitZ theorem)).收敛的交错级数的余部 介二(一l丫暇+,+…的符号与它的第一项相同,按绝对值来说,它小于这一项.收敛的交错级数的两个最简单的例子是 l一李+工一工+…+‘一1丫一1生+.… 2 34”一月 1一李十客一李十…+卜1丫一,一共十.… 2’57”、一声2n一l前一个级数的和是吨2;后一个级数的和是川4.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条