1) matrix array algorithm
矩阵数列算法
3) matrix sequence structure algorithm
矩阵序列结构算法
1.
In this paper, we give a new method to solve polynomial matrir equationsusing matrix sequence structure algorithm, and discuss its application in linear control systems.
给出了求解多项式矩阵方程的一种新方法-矩阵序列结构算法。
4) matrix algorithm
矩阵算法
1.
Study on protecting and monitoring system of combined switch based on MAS and matrix algorithm;
基于MAS和矩阵算法的组合开关保护测控系统的研究
2.
An optimization matrix algorithm is presented based on analysis of typical methods.
矩阵算法是求解不含负回路的网络中所有顶点对之间最短路的有效算法之一,但当节点比较多时,计算的矩阵多,重复计算量大,降低了计算效率。
3.
This paper introduces the concepts and types of location-allocation model, and probes into how to determine the position of service facilities in the network environment by using the matrix algorithm.
介绍了区位配置模型的概念与类型,运用矩阵算法,探讨了在网络环境中如何确定服务设施的位置。
5) matrix algorithms
矩阵算法
1.
It also found the minimum cutset of the fault tree with matrix algorithms.
综合分析了影响联合站仪器仪表可靠性的主要因素,建立了联合站仪器仪表失效故障树,并运用矩阵算法求出了故障树的最小割集,确定了主要失效形式,并提出了提高联合站仪器仪表可靠性的措施。
2.
In this paper,the correctness in theory of the matrix algorithms has been proved by matrix as tool,induction of four definitions,giving three theorems and two corollaries derived from theorems under the condition of polynomials multiplications and polynomials division which can or cannot be divided exactly.
目的研究多项式乘、除法的矩阵算法。
6) the algorithm matrix
算法矩阵
补充资料:结构分析矩阵法
结构分析矩阵法
matrix method of structural analysis
1 iegou fenxi luzhenfa结构分析矩阵法(matrix method ofstruetural analysi,)把结构分析中的变量和方程用矩阵表示并运算的方法。利用矩阵进行结构分析能使公式简明紧凑,便于编写电子计算机程序。随着计算机的迅速发展,矩阵法在各类工程结构的设计和计算中已得到广泛的应用。尤其是对于大型、复杂的结构分析问题,更显示其优越性。与结构分析中的力法和位移法相对应,矩阵法有矩阵力法和矩阵位移法。两法比较,后者计算简便、定型、规格化,更易于编写程序,因而比前者应用更广。矩阵位移法中的基本未知量是可动结点位移,用矩阵表示为 {占}=「占,灸……品〕了(l)建立基本系是在全部可动结点位移上附加约束,使原结构变为单跨固端梁系或饺结梁系。这些梁也称为单元。根据附加约束处的平衡条件,可建立可动结点平衡方程: 〔K。。〕{占}一{F。}(2)式中(3);护l22凡凡凡…凡 一一 几司|叫刁|列…kl…概klz灿一knzk肠︸瓜reses且1卫weeses.ee‘.L 一一 古 子 尤〔K:。〕称为可动结点劲度矩阵,其中任一元素可由有关单元劲度矩阵中的相应元素叠加得到。{凡}称为可动结点等效荷载列阵,其元素可由结点荷载与杆上荷载通过静力等效原则移置到结点上的荷载叠加求出。形成〔K。,〕、{F;}后,即可由式(2)求解{J}。 单元劲度是指某单元沿某一杆端约束方向发生一单位位移时,在单元各约束方向产生的约束力。由于{占}是按结构整体坐标系求解的,而单元杆端力则按单元局部坐标系计算,所以单元劲度矩阵分为局部坐标系的〔K初、和整体坐标系的〔K,〕‘。对于各种类型单元(如平面和空间的衍杆、梁等)的两种坐标系的劲度矩阵可查阅有关书籍。求出{占}后,即可知单元沿整体坐标系的杆端位移{占}*,再转换成局部坐标系方向的位移{占、},,即可由下式计算杆端力{F,}‘: {F。},=〔K,〕,于占二}、+{Ft}、(4)式中{Fl}‘表示第i单元的固端力列阵。 矩阵力法以多余约束力{X}作为基本未知量,以解除多余约束后的静定结构作为基本系,根据解除约束处的位移条件可建立矩阵力法基本方程: 〔△xx〕{X}二一{△。}(5)式中〔△x妇和{△时分别为柔度矩阵和荷载位移列阵。其中各元素可用虚功法计算。 矩阵法除用于杆系结构(例如水电站、排灌站厂房结构、桥梁和渡槽支架等)外,还可用于板壳、块体及组合结构(例如水工中的拱坝、蜗壳和尾水管等)的近似分析。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条