1) low temperature gas separation process
深冷气体分离过程
2) cryogenic separation of cracking gas
裂解气深冷分离
4) cryogenic separation
深冷分离
1.
This paper introduces the expansion refrigeration process of tail gas in the ethylene plant of Maoming Ethylene Project,and analyzes the effect of different expansion refrigeration modes on cryogenic separation.
结果发现 ,尾气膨胀机膨胀制冷对深冷分离的效果好于节流膨胀制冷 ,可节约能耗 ,提高装置的负荷 ,是一种很好的制冷方法。
2.
Through the comparison, selection and commercial application of technological options, three processes (pressure swing adsorption, membrane separation and deep cryogenic separation) for hydrogen purification were analyzed in detail.
迷择以及工业应用等几个方面,对氢提纯的三种工艺方法变压吸附、膜分离和深冷分离进行了详细分析,提出了各种方法的选择原则和使用条件,对炼油厂和石油化工厂经济地选择氢提纯方法有一定参考价值。
3.
In the conventional ethylene cryogenic separation process,the compression refrigeration system consumes a lot of cryogenic energy.
为解决传统乙烯深冷分离工艺中压缩制冷系统能耗高的问题,以30万吨/年乙烯深冷分离装置为研究对象,将液化天然气(LNG)冷能用于乙烯深冷分离工艺,取代部分压缩制冷负荷。
5) deep refrigeration
深冷分离
1.
A new method of rectisol process for coal gas purification with withdrawal of methane by deep refrigeration separation had set forth in this paper.
采用低温甲醇洗工艺和深冷分离相结合的工艺流程,有效地脱除了H2S和CO2,回收了合成甲醇工段的惰性气体甲烷。
6) BaPS technique
气压过程分离
补充资料:裂解气深冷分离
裂解气分离的重要方法之一,因过程采用了-100℃以下的低温冷冻系统,所以称深冷。原理是利用裂解气中各种烃的相对挥发度不同,在低温下把氢气以外的烃类都冷凝下来,然后在精馏塔内进行多组分精馏分离,因此这一方法实质是冷凝精馏过程。
分离程序 裂解气各组分分离的先后,在不违反其组分沸点的顺序下,是可以采用多种排列的方法分离的,在工业上普遍采用的是以碳原子数由少到多依次分离的顺序流程。此外,还有将裂解气先分为氢气-甲烷-C2烃和其他重组分两部分,然后再逐个分离,这是前脱乙烷流程。也有用先分出氢气和C1~C3烃的前脱丙烷流程。后两个流程的乙炔催化加氢通常在脱甲烷之前进行,故亦称前加氢流程。这时可以利用裂解气中本身所含的氢而无需另行补充。但裂解气中因有大量过剩的氢,反应难以控制,难免有少量的乙烯也被加氢而变成乙烷。此外,前加氢流程在脱乙烷(或脱丙烷)时,由于含有大量的轻组分,塔顶温度较低,因而比在顺序流程中相应部分所消耗的能量高10%~15%。如果采用后加氢流程则可严格控制氢炔之比,使乙炔转为乙烯,乙烯总量因而略增加。
分离过程 工业上广泛采用的深冷分离方法有低压法和高压法两种。前者脱甲烷塔在 0.6~0.7MPa的低压下操作,后者脱甲烷塔在约3.0MPa下操作。低压法的特点是在低压下甲烷与乙烯的相对挥发度增大。这在提馏段要求釜液甲烷含量低时更显得重要。另外,利用分氢过程冷凝的重组分由高压节流至低压脱甲烷塔时,能够蒸发部分甲烷并使液体降温,因此可降低该塔的回流比,从而节省能量。但塔顶温度低至-130℃,需用甲烷-乙烯-丙烯三级制冷,使系统复杂化,低温钢材用量也相应增多。高压法的脱甲烷塔塔顶温度为-96℃,只需用乙烯作制冷剂,制冷系统简单,低温钢材用量少;其缺点是压力增加,相对挥发度减小,不利于组分分离,需加大塔的回流比,能耗增大。
以轻柴油为裂解原料的裂解气高压法顺序分离流程(见图)为例,分离步骤是:①裂解气经冷却预分馏除去重组分后,进入五段的透平压缩机。压缩后的气体,进入装填分子筛的干燥器中,干燥后的气体同各种冷物料、丙烯制冷剂和乙烯制冷剂进行热交换。冷凝的液态烃根据轻重分别进入脱甲烷塔塔板相应的位置,即多股进料。未冷凝的富氢气体可作为乙炔加氢的氢气来源,或进一步用变压吸附法提高浓度以得到产品氢气。②脱甲烷塔顶操作压力3.4MPa、温度-96℃,用蒸发-101℃乙烯冷却,塔釜用冷凝气相丙烯再沸。③脱甲烷塔釜液流入脱乙烷塔,此塔顶部分出的乙烯-乙烷馏分与氢混合后进入乙炔转化塔脱炔,用氧化铝载体上的钯催化剂,使乙炔转化为乙烯或乙烷,残存乙烃仅1~2ppm。加氢后的气体脱除加氢过程所生成的少量聚合物(绿油)后,进入乙烯精馏塔。产品乙烯从塔顶第 8块侧线抽出;塔顶排出因加氢带入的甲烷,并返回压缩机三段以回收其中伴随的乙烯;塔底的乙烷则作为裂解原料送入裂解炉。④脱乙烷塔的釜液进入脱丙烷塔,釜温达109℃,在此温度下,双烯烃有聚合的倾向。故另有备用再沸器以便定期切换及清理。塔顶C3馏分含丙烯约90%,进行加氢除去甲基乙炔与丙二烯后,可作为化学级丙烯产品。为了获得聚合级产品,则要用精馏法除去少量C2,再进入丙烯精馏塔,分离丙烷。⑤脱丙烷塔底物料送入脱于烷塔,塔顶馏出的碳四馏分可作商品出售或用于抽提丁二烯与丁烯。塔底得到碳五以上裂解汽油。
分离程序 裂解气各组分分离的先后,在不违反其组分沸点的顺序下,是可以采用多种排列的方法分离的,在工业上普遍采用的是以碳原子数由少到多依次分离的顺序流程。此外,还有将裂解气先分为氢气-甲烷-C2烃和其他重组分两部分,然后再逐个分离,这是前脱乙烷流程。也有用先分出氢气和C1~C3烃的前脱丙烷流程。后两个流程的乙炔催化加氢通常在脱甲烷之前进行,故亦称前加氢流程。这时可以利用裂解气中本身所含的氢而无需另行补充。但裂解气中因有大量过剩的氢,反应难以控制,难免有少量的乙烯也被加氢而变成乙烷。此外,前加氢流程在脱乙烷(或脱丙烷)时,由于含有大量的轻组分,塔顶温度较低,因而比在顺序流程中相应部分所消耗的能量高10%~15%。如果采用后加氢流程则可严格控制氢炔之比,使乙炔转为乙烯,乙烯总量因而略增加。
分离过程 工业上广泛采用的深冷分离方法有低压法和高压法两种。前者脱甲烷塔在 0.6~0.7MPa的低压下操作,后者脱甲烷塔在约3.0MPa下操作。低压法的特点是在低压下甲烷与乙烯的相对挥发度增大。这在提馏段要求釜液甲烷含量低时更显得重要。另外,利用分氢过程冷凝的重组分由高压节流至低压脱甲烷塔时,能够蒸发部分甲烷并使液体降温,因此可降低该塔的回流比,从而节省能量。但塔顶温度低至-130℃,需用甲烷-乙烯-丙烯三级制冷,使系统复杂化,低温钢材用量也相应增多。高压法的脱甲烷塔塔顶温度为-96℃,只需用乙烯作制冷剂,制冷系统简单,低温钢材用量少;其缺点是压力增加,相对挥发度减小,不利于组分分离,需加大塔的回流比,能耗增大。
以轻柴油为裂解原料的裂解气高压法顺序分离流程(见图)为例,分离步骤是:①裂解气经冷却预分馏除去重组分后,进入五段的透平压缩机。压缩后的气体,进入装填分子筛的干燥器中,干燥后的气体同各种冷物料、丙烯制冷剂和乙烯制冷剂进行热交换。冷凝的液态烃根据轻重分别进入脱甲烷塔塔板相应的位置,即多股进料。未冷凝的富氢气体可作为乙炔加氢的氢气来源,或进一步用变压吸附法提高浓度以得到产品氢气。②脱甲烷塔顶操作压力3.4MPa、温度-96℃,用蒸发-101℃乙烯冷却,塔釜用冷凝气相丙烯再沸。③脱甲烷塔釜液流入脱乙烷塔,此塔顶部分出的乙烯-乙烷馏分与氢混合后进入乙炔转化塔脱炔,用氧化铝载体上的钯催化剂,使乙炔转化为乙烯或乙烷,残存乙烃仅1~2ppm。加氢后的气体脱除加氢过程所生成的少量聚合物(绿油)后,进入乙烯精馏塔。产品乙烯从塔顶第 8块侧线抽出;塔顶排出因加氢带入的甲烷,并返回压缩机三段以回收其中伴随的乙烯;塔底的乙烷则作为裂解原料送入裂解炉。④脱乙烷塔的釜液进入脱丙烷塔,釜温达109℃,在此温度下,双烯烃有聚合的倾向。故另有备用再沸器以便定期切换及清理。塔顶C3馏分含丙烯约90%,进行加氢除去甲基乙炔与丙二烯后,可作为化学级丙烯产品。为了获得聚合级产品,则要用精馏法除去少量C2,再进入丙烯精馏塔,分离丙烷。⑤脱丙烷塔底物料送入脱于烷塔,塔顶馏出的碳四馏分可作商品出售或用于抽提丁二烯与丁烯。塔底得到碳五以上裂解汽油。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条