1) generalized Born Series
广义博恩级数
2) Born series
博恩级数
3) generalized series
广义级数
1.
The concept of generalized series in a Banach space is introduced,convergence of the series is discussed,and some conditions under which a generalized series is convergent and some properties on the series are given.
研究了Banach空间中广义级数的收敛性,给出了广义级数收敛的等价条件及一系列判别方法;同时还得到了收敛广义级数的若干性质,并讨论了广义级数与普通级数的关
4) generalized Dirichlet series
广义Dirichlet级数
1.
A necessary and sufficient condition is given for the existence of an entire function, being not identical to zero, bounded in a horizontal strip and represented by generalized Dirichlet series.
对于由广义Dirichlet级数表示,并且在固定带形有界、不恒为零的整函数的存在性,给出了充要条件。
2.
For an entire functions represented by generalized Dirichlet series,the accurate zero order k(σ),type τ and infinite(R-H) order ρ(σ) in any horizontal line are defined and estimated.
对于由广义Dirichlet级数所表示的整函数f(s),引进它在每一条水平直线上的准确零(R)级k(σ)及型τL和无穷(R-H)级ρ(σ),得到关于它们的估计。
5) generalized power series
广义幂级数
1.
First,a complex shift value is added into governing equations,and a modal iterative formula is obtained with a generalized power series.
首先对控制方程进行移频处理,利用广义幂级数展开式获得模态迭代公式,并利用迭代结果与各阶振型表示复振型导数;然后把系统的广义动柔度矩阵表示为已知的低阶模态与截断的高阶模态之和,高阶模态部分采用多个矩阵多项式与一个广义幂级数的乘积表示,并利用系统的低阶模态和系统矩阵进行计算;各阶移频值表示为相应的移频系数与复特征值的乘积,它们仅与最低阶模态移频值的模和本阶模态的单位复特征值有关,而最低阶模态的移频系数通过精度分析获得。
6) generalized Fourier series
广义Fourier级数
补充资料:d’Alembert准则(关于级数收敛性的)
d’Alembert准则(关于级数收敛性的)
d'Akmbert criterion (convergence of series)
如果 }u.,1 。一二]u。i则级数可能收敛也可能发散;两个级数 呈兴和呈一菩叫 自矿’m自在都满足这个条件,但第一个级数是收敛的,而第二个级数是发散的. 这个准则是J.d,A肠nbert确立的(1768). J’I,八.均刀p朋uea撰【补注】这个准则也称为比值检验法(mlio馏t),见[A 11.d,A如咧bert准则(关于级数收敛性的)【d’A如11加时州触.南n(。皿到段咨”沈Of Sed昭);八‘从aM6epa nPo3。奴} 对于数项级数 五u一如果存在数q,O
1. ”~田!u。!则这个级数发散.例如,对于一切复数z,级数 杀z” n.I月!绝对收敛,因为 I_”+11 }Z一} l(玲十l)!} 凡~仍}公一} }”:}而对于一切:砖。,级数艺篡1。!广发散,因为 俪」色山」兰兰上=十二. ”~田!n!2一!
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条