1) fluid summation method
流体求和法
2) summation approach
求和方法
1.
The momentum correction coefficient for complex river channels with summation approach over section elements has been developed for steady, uniform and turbulent flows.
针对恒定、均匀、紊动水流,分析了用划分单元求和方法计算复杂断面动量而产生的动量校正系数。
3) column sum method
列求和法
4) Lekner method
Lekner求和法
5) summability
求和法
1.
The summability of (N,d) is defined, the degree of approximation to a function f(x)∈r[- 1, 1] (r∈N9) by (N,σ) means of its Techebycheff-Fourier series is discussed.
本文定义了(N,σ)求和法,讨论函数人f(x)∈r[-1,1],(r∈N)的切彼晓夫-富里埃级数的逼近阶。
2.
The summability of(H,λ)which contains the summabilities of (N,Pn),(Rnτ) and (Vmn) is defined.
我们定义了(H,λ)求和法,它含有(N,p_n),(R_n~γ)和(V_(mn))求和法。
6) Schur summation methods
Schur求和法
补充资料:一般数列求和方法
一般数列的求和方法
(1)直接求和法,如等差数列和等比数列均可直接求和.
(2)部分求和法将一个数列分成两个可直接求和的数列,而后可求出数列的前n项的和.
(3)并项求和法将数列某些项先合并,合并后可形成直接求和的数列.
(4)裂项求和法将数列各项分裂成两项,然后求和.
(5)“q倍减”求和法.若数列{an}为等差数列,{bn}为等比数列,则求数列{anbn}的前n项的和均可以采用此方法.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条