1) fluid cutting
流体侵蚀
2) seepage inflow erosion
渗流侵蚀
1.
The main form and characteristics of dike seepage inflow erosion,and analyses occurrence mechanism of the erosion are summarized.
渗流侵蚀对堤防危害很大 ,研究堤防渗流侵蚀机理及其治理对确保长江中下游安全渡汛具有十分重要的意义。
3) runoff erosion
径流侵蚀
1.
Influence of slope gradient on runoff erosion of purple soil slope in the Three Gorges Reservoir area
坡度对三峡库区紫色土坡面径流侵蚀的影响分析
2.
Relationships between rainfall erosion and runoff erosion and their contribution to soil erosion have been researched by using rainfall simulation with dual runoff plots.
降雨侵蚀过程包括径流侵蚀作用和雨滴打击作用两个方面,传统的单径流小区降雨试验难以区分二者对坡面侵蚀的贡献。
4) watershed erosion
流域侵蚀
1.
7% of watershed erosion.
根据王家桥流域观测资料及人工降雨实验成果,从侵蚀力学机制出发,严格区分了坡面侵蚀与流域侵蚀两个不同的概念,建立了坡面侵蚀模数和流域侵蚀模数。
5) fluvial erosion
流水侵蚀
1.
All potholes distributed on the mountain erosion surface or river valley at different heights above sea levels in northern North China are not the evidence of Quaternary glacier,but a mark of fluvial erosion on ancient landform,whatever considered it from geography environment or geomorphology evolution.
分布在华北北部山顶面上的“冰臼”,无论从地理环境、地貌演化,还是从海拔高度方面分析,都不是第四纪大冰盖的证据,而是古地貌面上流水侵蚀的遗迹。
6) spread flow erosion
漫流侵蚀
补充资料:达西渗流定律
流体在多孔介质内运动的基本规律,也是从宏观角度描述渗流过程的统计规律。这个定律是1856年法国水利工程师H.-P.-G.达西为解决水的净化问题从大量实验中总结出来的。达西对水通过均匀砂层的缓慢流动作了大量实验,研究表明:单位时间流过砂层的体积流量Q与横截面积A、测压管水头差h1-h2成正比,与流过的砂层长度L成反比:
式中Q/A=v为渗流速度;(h1-h2)/L=J为水力坡度。上式也可写成:
v=KJ,
(1)
式中 K为标志渗流能力大小的实验常数,称为渗透系数。它既与砂层的结构有关,又与流过的流体性质有关。由量纲分析知,,其中ρ、μ分别为流体的密度和动力粘性系数;g为重力加速度;k称为介质的渗透率。式(1)又可写作:
。
(2)式(1)或式(2)都是达西渗流定律,它表示渗流速度与水力坡度呈线性关系,故称达西线性渗流定律。
实验发现,随着雷诺数Re的增加,多孔介质中的流动状态经历三个区域:①线性层流区:粘性力占优势,达西定律成立,上限约在Re=10左右;②非线性层流区(过渡区):为主要被惯性力制约的层流,达西定律不成立,上限约在Re=100左右,在上限附近开始有层流到湍流的过渡;③湍流区:惯性力占优势,达西定律不成立。由此可见,从上限雷诺数方面偏离达西定律与层流到湍流的过渡不是完全等价的。
在渗流速度很低时,流体与介质间的表面分子力作用显得更为重要。部分液体的滞流现象使孔隙度发生变化,从而引起渗透率的相应变化。实验表明,这时孔隙度和渗透率均随渗流速度的增加而增加,速度到某一临界值后不再变化,因此不遵循达西定律。
在雷诺数大于上限Re数的情况下,应该用"渗流的二项式定律"代替达西定律,即
J=Av+Bv2,
式中A、B为决定于流体和介质性质的常数。
在雷诺数小于下限Re数情况下,非线性渗流定律的一般形式可写为:
,
式中f(J)为小雷诺数情况下渗透率随水力坡度的变化函数关系,由实验确定。
以上主要是单相流体达西渗流定律;对于多相流体,达西定律对每一相仍然成立,只需将渗透率修正为该相的相渗透率即可。
参考书目
J.Bear, Dynamics of Fluids in Porous Media,American Elsevier,New York,1972.
式中Q/A=v为渗流速度;(h1-h2)/L=J为水力坡度。上式也可写成:
v=KJ,
(1)
式中 K为标志渗流能力大小的实验常数,称为渗透系数。它既与砂层的结构有关,又与流过的流体性质有关。由量纲分析知,,其中ρ、μ分别为流体的密度和动力粘性系数;g为重力加速度;k称为介质的渗透率。式(1)又可写作:
。
(2)式(1)或式(2)都是达西渗流定律,它表示渗流速度与水力坡度呈线性关系,故称达西线性渗流定律。
实验发现,随着雷诺数Re的增加,多孔介质中的流动状态经历三个区域:①线性层流区:粘性力占优势,达西定律成立,上限约在Re=10左右;②非线性层流区(过渡区):为主要被惯性力制约的层流,达西定律不成立,上限约在Re=100左右,在上限附近开始有层流到湍流的过渡;③湍流区:惯性力占优势,达西定律不成立。由此可见,从上限雷诺数方面偏离达西定律与层流到湍流的过渡不是完全等价的。
在渗流速度很低时,流体与介质间的表面分子力作用显得更为重要。部分液体的滞流现象使孔隙度发生变化,从而引起渗透率的相应变化。实验表明,这时孔隙度和渗透率均随渗流速度的增加而增加,速度到某一临界值后不再变化,因此不遵循达西定律。
在雷诺数大于上限Re数的情况下,应该用"渗流的二项式定律"代替达西定律,即
J=Av+Bv2,
式中A、B为决定于流体和介质性质的常数。
在雷诺数小于下限Re数情况下,非线性渗流定律的一般形式可写为:
,
式中f(J)为小雷诺数情况下渗透率随水力坡度的变化函数关系,由实验确定。
以上主要是单相流体达西渗流定律;对于多相流体,达西定律对每一相仍然成立,只需将渗透率修正为该相的相渗透率即可。
参考书目
J.Bear, Dynamics of Fluids in Porous Media,American Elsevier,New York,1972.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条