1) doublet filter
二项滤波器
2) polyphase filter
多项滤波器
1.
Research and simulation of polyphase filter arithmetic in water acoustic signal processing
多项滤波器算法在水声信号处理中的研究和仿真
3) binomial coefficient filtering
二项式系数滤波
1.
The spectrum character of binomial coefficient filtering;
二项式系数滤波的谱特征
4) Polynomial Filter
多项式滤波器
1.
The polynomial filter of compactly supported orthonormal wavelet;
紧支撑正交小波的多项式滤波器
6) 2-dimension filter
二维滤波器
1.
It may modify one or more parameters to study the character and effects of 2-dimension filter system.
这种可视化处理过程,形象直观,便于理解和学习图像处理过程、二维滤波器系统特征。
补充资料:二项式系数
二项式系数
binomial coefficients
tion)而得到的无序组合数有关.把二项式系数写成算术三角形即P瑰沈al三角形(Pascal triangle)的形式是非常方便的,这个三角形的构造根据二项式系数的下列性质: fNI,fN{!N+11 卜!十{。钓{一{篇+讨(2) 二项式系数以及算术_几角形,在不同程度的发展形式下,古代数学家己有所了解B.Pas以1‘16〔,5)详细地研究了二项式系数的性质.除了关系式(2)以外,在二项式系数之间还有许多其他有用的关系式,例如, 「Nl{N) t”!{N一。}’ 圈/刻川飞二盯·‘。《“一; 么,、:,,fN、、_,.} 、、(一1丫k用}‘,’{二0片:二O…_,.N一l} 白、人少几}k}一叭‘r‘一U~一’·,且’} 各fn飞2 fZnl{(3) ‘Ik}In}} 、认「N},,,,、,、,、{ 、’}‘,’}k(k一l)一(k一r千l)二! ‘}k}‘、、n’声、几‘”一} N〔N一1、…‘N一r十价·2脚厂、{ 么.、、fNI,,,、、.‘、} 、’‘一1丫}不厂1 kfk一1)一fk一厂一+】、二0} 、代’‘,}kj几’八”‘n‘’】,一!待别是,山(3)可以得到 么。、。_、{ 么}关!二2‘;! 琴(4) 污…,,,、‘}刀{、} 》’‘一刁)”{‘,’l二0.{ 六“’{‘一U‘{ 利用Stidi雌公式(Stil创ng formula)可以得到-项式系数的近似表达式例如,当N远大于n喇,有 「N}N” }月jn! 在复数仪的情况卜,可以把二项式系数按卜列公式推广: fala(a一l)一(a一n+l)_,、「a} !}=一一.n‘夕U二1八l二二1, 七nJ n 11气少j这时,(2)一(4)中的某些关系式仍然成立,但是一般地说,形式有所改变.例如, 「al,la{_la+11 {”卜十)~‘}二}~:}: Ln](月十l}tn十lj 燕}井卜2“,“e“>一’; 十C〔厂、 ,r,1、奋{al八n~八 、,(一l、凡}了l二二U Ke以>t)- 人二O关于二项式系数表,见[2],[3].二项式系数!bin佣11川姗伍dal.;6~碟即冲-中即”.”…“] Ne,don二项式(Newton blno皿1)(l+艺)入的展开式中g的各次幂的系数.二项式系数用 (澎l (nJ或嵘来表示,并且由下式给出: fN飞一。N! 日二C乃一石兀石二.万万一(l) _州N-也‘二进二生些。(。镇N 一。!第一种表示法(仁)是L.Euler首先采用的;第二种表示法C刃出现在19世纪,可能同把二项式系数解释为从N个不同对象中取,,个对象形成一个组合(combina-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条