1) coordinate digitizer
配位数字转换器
2) absolute digital position transducer
绝对数字位置转换器
3) shaft position digitizer
转换数字转换器
4) digital converter
数字转换器
1.
Design and Implementation of Synchro-to-Digital Converter;
自整角机数字转换器的设计与实现
2.
Using digital converter AU6802 for sampling the sine & cosine analog signal of magslip’s output and covert it into digital pulse signal to be accordance with optical code output,processing them by any kind of CPU are facilitated.
应用数字转换器件AU6802对旋转变压器输出互为正余弦关系的模拟信号进行采样,将其转换成与光电码盘输出一致的数字脉冲信号,以便于各种CPU进行处理。
3.
A method of rotor position detection in permanent magnet synchronous motor(PMSM) control system, which transforms analog signals of resolver to digital signals using a novel resolver-digital converter AD2S1200, was introduced.
该方法采用新型旋转变压器/数字转换器AD2S1200,将旋转变压器输出的模拟信号转化为数字信号。
5) digital quantizer
数字转换器
1.
A smart temperature sensor based on AVR controller and digital quantizer MAX6675 is proposed in order to adapt for the control of modern aeroengine and explore successful utilization of distributed digital electronic control system in aeroengine.
为了适应现代航空发动机控制需要,在探索分布式电子控制系统运用于航空发动机的基础上,设计了一种基于AVR单片机与数字转换器MAX6675的智能温度传感器,并构建了温度测量电路、开路报警电路和显示电路。
6) shaft position digitizer
转角数字转换器
补充资料:配位数
在配位化合物(简称配合物)中直接与中心原子连接的配体的原子数目。通常,配位数可以从2到9。如在配合物[Nb(H2O)9]3+和[ReH9]2-中配位数为9;在[Mo(CN)8]4-和[TaF8]3-中为8;在[ZrF7]3-和[NbF7]2-中为7;在[Ti(H2O)6]3+、[Co(NH3)6]3+中为6;在[CdCl5]3-和Fe(CO)5中为 5;在[BeCl4]2-、[Zn(CN)4]2- 和Ni(CO)4中为4;在[HgI3]-中为3;在[Ag(NH3)2]+和[Au(CN)2]- 中为2。配位数为10或更高(11或12)的只在镧系和锕系配合物中偶尔发现,是极少见的。影响配位数的因素如下:
中心原子的大小 中心原子的最高配位数决定于它在周期表中的周次。在周期表内,第1周期元素的最高配位数为2,第2周期元素的最高配位数为4,第3周期为6,以下为8、10。最高配位数是指在配合物中,中心原子周围的最高配位原子数,实际上一般可低于最高数(表1)。由表可见,在实际中第1周期元素原子的配位数为2,第2周期不超过4。除个别例外,第3、4周期不超过6,第5、6周期为8。最常见的配位数为4和6,其次为2、5、8。配位数为奇数的通常不如偶数的普遍。
中心原子的电荷 中心原子的电荷高,配位数就大。例如,等电子系列的中心原子Ag+、Cd2+和In3+与Cl-分别生成配位数为2、4和6的[AgCl2]-、[CdCl4]2-和[InCl6]3-配离子。同一元素不同氧化态的离子常具有不同的配位数,例如,二价铂离子Pt2+的配位数为4,而4价铂离子Pt4+为6。这是因为中心离子的电荷愈高,就需要愈多的配体负电荷来中和。
中心原子的成键轨道性质和电子构型 从价键理论的观点来说,中心原子成键轨道的性质决定配位数,而中心原子的电子构型对参与成键的杂化轨道的形成很重要,例如,Zn2+和Cu+离子的5个3d轨道是全满的,适合成键的是一个4s和3个4p轨道,经sp3杂化形成4个成键轨道,指向正四面体的四个角。因此,Zn2+和Cu+与CN-生成配位数为4的配离子[Zn(CN)4]2-和[Cu(CN)4]3-,并且是正四面体构型(表2)。
配体的性质 同一氧化态的金属离子的配位数不是固定不变的,还取决于配体的性质。例如,Fe3+与Cl-生成配位数为 4的[FeCl4]-,而与F-则生成配位数为 6的[FeF6]3-。这是因为 Fe3+从每个体积较大而较易极化的Cl-接受的电荷要大于体积较小而较难极化的F-。
配合物的中心原子与配体间键合的性质,对决定配位数也很重要。在含F-的配合物中,中心原子与电负性很高的F-间的键合主要是离子键。如在B3+、Fe3+和Zr4+与F-的配合物中,随着中心原子半径的增加,配位数分别为4、6和7,主要受中心原子与配体的半径比的限制(表3)。很多配合物的中心原子与配体(例如CN-、NO娛、SCN-、Br-、I-、NH3和CO等)间主要形成共价键,它们的配位数决定于中心原子成键轨道的性质。
配位场理论认为中心原子的内层轨道受周围配体的影响,也即关系到配位数。例如,Ni2+离子与H2O和NH3等具有小的相互排斥力的弱场配体,生成配位数为 6的[Ni(H2O)6]2+和[Ni(NH3)6]2+等八面体配离子;与Br-和I-等具有大的相互排斥力的弱场配体则趋向于生成配位数为4的[NiBr4]2-和[NiI4]2-等正四面体配离子;与CN-等强场配体则生成配位数为4的[Ni(CN)4]2-平面正方形配离子。
参考书目
戴安邦主编:《配位化学》(无机化学丛书),科学出版社,北京,1987。
中心原子的大小 中心原子的最高配位数决定于它在周期表中的周次。在周期表内,第1周期元素的最高配位数为2,第2周期元素的最高配位数为4,第3周期为6,以下为8、10。最高配位数是指在配合物中,中心原子周围的最高配位原子数,实际上一般可低于最高数(表1)。由表可见,在实际中第1周期元素原子的配位数为2,第2周期不超过4。除个别例外,第3、4周期不超过6,第5、6周期为8。最常见的配位数为4和6,其次为2、5、8。配位数为奇数的通常不如偶数的普遍。
中心原子的电荷 中心原子的电荷高,配位数就大。例如,等电子系列的中心原子Ag+、Cd2+和In3+与Cl-分别生成配位数为2、4和6的[AgCl2]-、[CdCl4]2-和[InCl6]3-配离子。同一元素不同氧化态的离子常具有不同的配位数,例如,二价铂离子Pt2+的配位数为4,而4价铂离子Pt4+为6。这是因为中心离子的电荷愈高,就需要愈多的配体负电荷来中和。
中心原子的成键轨道性质和电子构型 从价键理论的观点来说,中心原子成键轨道的性质决定配位数,而中心原子的电子构型对参与成键的杂化轨道的形成很重要,例如,Zn2+和Cu+离子的5个3d轨道是全满的,适合成键的是一个4s和3个4p轨道,经sp3杂化形成4个成键轨道,指向正四面体的四个角。因此,Zn2+和Cu+与CN-生成配位数为4的配离子[Zn(CN)4]2-和[Cu(CN)4]3-,并且是正四面体构型(表2)。
配体的性质 同一氧化态的金属离子的配位数不是固定不变的,还取决于配体的性质。例如,Fe3+与Cl-生成配位数为 4的[FeCl4]-,而与F-则生成配位数为 6的[FeF6]3-。这是因为 Fe3+从每个体积较大而较易极化的Cl-接受的电荷要大于体积较小而较难极化的F-。
配合物的中心原子与配体间键合的性质,对决定配位数也很重要。在含F-的配合物中,中心原子与电负性很高的F-间的键合主要是离子键。如在B3+、Fe3+和Zr4+与F-的配合物中,随着中心原子半径的增加,配位数分别为4、6和7,主要受中心原子与配体的半径比的限制(表3)。很多配合物的中心原子与配体(例如CN-、NO娛、SCN-、Br-、I-、NH3和CO等)间主要形成共价键,它们的配位数决定于中心原子成键轨道的性质。
配位场理论认为中心原子的内层轨道受周围配体的影响,也即关系到配位数。例如,Ni2+离子与H2O和NH3等具有小的相互排斥力的弱场配体,生成配位数为 6的[Ni(H2O)6]2+和[Ni(NH3)6]2+等八面体配离子;与Br-和I-等具有大的相互排斥力的弱场配体则趋向于生成配位数为4的[NiBr4]2-和[NiI4]2-等正四面体配离子;与CN-等强场配体则生成配位数为4的[Ni(CN)4]2-平面正方形配离子。
参考书目
戴安邦主编:《配位化学》(无机化学丛书),科学出版社,北京,1987。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条