2) Cyclic spectrum density
循环谱密度
1.
This paper focuses on using cyclic spectrum density to detect the primary receivers.
大部分人工合成的信号都可以看成是循环平稳随机过程,利用谱相关函数可以有效地检测这些信号,文中主要考虑用循环谱密度监测原始用户的可行性。
2.
Based on the analytic method of cyclic spectrum density,the paper pointed out that the impact frequency could be extracted effectively with the help of scanning cyclic frequency domain.
通过对循环谱密度分析方法的特性分析,指出应用循环谱密度分析方法可以在循环频率域有效提取出滚动轴承的冲击故障频率。
3) Cyclic spectral density
循环谱密度
4) equivalent circulating density
等量循环密度
5) high density circulating bed
高密度循环床
6) deadlock cycle density
死锁循环密度
补充资料:功率谱密度估计
随机信号的功率谱密度用来描述信号的能量特征随频率的变化关系。功率谱密度简称为功率谱,是自相关函数的傅里叶变换。对功率谱密度的估计又称功率谱估计。平稳随机信号x(t)的(自)功率谱Sxx(ω)定义为
(1)
式中rxx(τ)为平稳随机信号的自相关函数。
对于离散情况,功率谱表示为
(2)
式中T为离散随机信号的抽样间隔时间。
当利用随机信号的 N个抽样值来计算其自相关估值时,即可得到功率谱估计为
(3)
可见,随机信号的功率谱与自相关函数互为傅里叶变换的关系,这两个函数分别从频率域和时间域来表征随机信号的基本特征。按上式计算功率谱估值,其运算量往往很大,通常采用快速傅里叶变换算法,以减少运算次数。
计算信号功率谱的方法可以分为两类:一为线性估计方法,有自相关估计、自协方差法及周期图法等。另一类为非线性估计方法,有最大似然法、最大熵法等。线性估计方法是有偏的谱估计方法,谱分辨率随数据长度的增加而提高。非线性估计方法大多是无偏的谱估计方法,可以获得高的谱分辨率。
参考书目
何振亚:《数字信号处理的理论与应用》,人民邮电出版社,北京,1983。
A. V. Oppenheim, R. W. Schafer, Digital Signal Processing Prentice-Hall, Inc., Englewood Cliffs,New Jersey,1975.
(1)
式中rxx(τ)为平稳随机信号的自相关函数。
对于离散情况,功率谱表示为
(2)
式中T为离散随机信号的抽样间隔时间。
当利用随机信号的 N个抽样值来计算其自相关估值时,即可得到功率谱估计为
(3)
可见,随机信号的功率谱与自相关函数互为傅里叶变换的关系,这两个函数分别从频率域和时间域来表征随机信号的基本特征。按上式计算功率谱估值,其运算量往往很大,通常采用快速傅里叶变换算法,以减少运算次数。
计算信号功率谱的方法可以分为两类:一为线性估计方法,有自相关估计、自协方差法及周期图法等。另一类为非线性估计方法,有最大似然法、最大熵法等。线性估计方法是有偏的谱估计方法,谱分辨率随数据长度的增加而提高。非线性估计方法大多是无偏的谱估计方法,可以获得高的谱分辨率。
参考书目
何振亚:《数字信号处理的理论与应用》,人民邮电出版社,北京,1983。
A. V. Oppenheim, R. W. Schafer, Digital Signal Processing Prentice-Hall, Inc., Englewood Cliffs,New Jersey,1975.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条