1) bioturbate texture
生物扰动结构
2) bioturbation structure
生物扰动构造
1.
Most of them are bioturbation structures whose ichnogenera and ichnospecies cannot be identified.
首次在鄂尔多斯盆地西北缘桌子山地区下奥陶统三道坎组发现遗迹化石,其中绝大部分为无法鉴定遗迹属种的生物扰动构造。
2.
Stratification of the Paleogene Dongying Lake is discussed based on the bioturbation structures of lacustrine oil source rocks deposited in it.
生物扰动构造发育程度与湖水充氧条件及湖水分层有密切关系。
3.
Trace fossils and bioturbation structures were first discovered from the Middle Ordovician Badou Member of Fengfeng Formation and the Member 1 of Jinsushan Formation at Jinsushan, Shaanxi Province, sourthern margin of Ordos basin, where plentiful bioturbation structures are composed of unidentified species and genera and abundant stromatolites.
首次在鄂尔多斯盆地南缘陕西金粟山中奥陶统峰峰组八陡段与金粟山组第一段发现遗迹化石及其生物扰动构造 。
3) perturbation structure
扰动结构
4) structural perturbations
结构扰动
1.
The method of Liapunov function is employed to study a class of time-varying differential-algebraic systems,the stationary oscillation theorem is obtained under structural perturbations.
利用广义Liapunov函数方法,研究一类时变微分代数系统,得到该类变微分代数大系统在结构扰动下的平稳振荡定理。
5) structural disturbance
结构扰动
1.
Furthermore, in the practical systems, the failures of the systems possess diversity in which structural disturbance o.
而且,在实际系统中,系统的故障具有多样性,其中结构扰动现象在实际中偶尔会出现,这种故障会给系统带来非常恶劣的影响。
6) Bioturbation
生物扰动
1.
Advance in bioturbation effect in benthic-pelagic interface;
生物扰动在水层-底栖界面耦合中的作用
2.
The effect of bioturbation of Manila clam Ruditapes philippinarum on the vertical distribution of sediment particles was studied with tracer beads.
以化学稳定的荧光砂作为示踪颗粒 ,研究底栖双壳类软体动物菲律宾蛤仔对沉积物的扰动 ,探讨滤食性贝类通过生物扰动作用在水层—底栖耦合过程中的作用。
3.
This paper aims to describe the main processes and progress in benthic pelagic coupling, including sedimentary dynamics of the organic matter, benthic response of the macrofauna and meiofauna, biodeposition and lateral advection, bioturbation and resuspension, and the main progress in this field.
概述浅海生态系的水层系统与底栖系统耦合的基本原理,着重介绍有机质沉降动力学、底栖生态系统对有机质的响应、生物沉降和侧向平流、生物扰动和沉积物再悬浮研究的进展,结语中提出应予优先支持研究的科学问
补充资料:持续作用扰动下的稳定性
持续作用扰动下的稳定性
stability in the presence of persistently acting perturbations
持续作用扰动下的稳定性仁咖幽勺协触脚。曰盆兄of哪滋众团ya曲嗯碑由州画d.侣;yc功后”.即c几np班noc”-,。110朋益e拍即IO四,x BO3M脚日e朋,xj 初值问题 交=f(x,r),x(t。)二x。,x任R”(*)之解x。(t)(t)t。)的如下性质:对每一个。>O都有一个占>O使得对每一个适合不等式!y。一x。}<占的夕.,,以及满足以下条件的每一个映射g(x,:): a)在集合 E:={(x,t):t)t。,{x一x。(t)i<。}上g和g,都连续; b)s印(:,,)。::}夕(x,t)一f(x,t)I<吞,初值问题 乡=g(y,t),夕(t。)=夕。,夕任R”的解y。(t)对一切t)屯,有定义且满足不等式 suP}y。(t)一x。(t)}<£. r)t。 Bohi定理(B心h】t玩”~)(【11).设初值问题(,)有解x(t),t)t。,满足以下条件: 幻f和fx对某个。。在瓦。上连续; 刀)s叩。,:。4}人(x(t),t)}}<+的: 下)映射f在点(x(t),‘),t)t。,处对x可微,这个可微性对t)t。是一致的,即 s叩兴}厂(二(‘)+,,,)一f(、(。),:)+ ,》万。}y} 一人(x(t),亡)yl~0当y一,O时.这时,为使初值问题的解在持续作用的扰动下为稳定,必要与充分条件是:方程组又=厂(x,t)沿解x(t)的变分方程(粗血tiona】叹业tio璐)组的上奇异指数(见奇异指数(s泊g止汀exponents))小于零. 若f(x,t)不含t(即自治系统),而解x(t)为周期的或常值的;或者f(x,t)对t有周期而解x(0也有相同的(或可公度的)周期或者常值,则:l)Bohi定理中所陈述的一致可微性条件是多余的(它可从定理的其他条件导出);2)方程组交=f(x,t)沿解x(t)的变分方程组的上奇异指数可以有效地算出来.【补注】持续作用扰动下的稳定性也称为持续扰动下的稳定性(stab正ty Under pelsis招ni perturhatio幻)或全稳定性(total stabiljty).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条