1) frozen ground
冻结地层
3) artificial ground freezing
人工地层冻结
1.
Development and prospect of research on application of artificial ground freezing;
人工地层冻结应用研究进展和展望
2.
According to the requirement of theoretical study and engineering practice,the data of temperature,stress,surface deformation and soil layers displacement are surveyed in situ during the artificial ground freezing of a tunneling engineering in Shanghai,and the data are analyzed and the regularity is studied.
针对理论研究和冻结工程的实际需要,结合上海某隧道人工地层冻结工程实践,对土体冻结过程中温度、应力、地表变形及土体分层位移进行了现场测试,并分别对测试结果进行了归纳整理和规律性研究;最后综合分析得出了几点结论和看法。
3.
Model test on artificial ground freezing was applied to an underground engineering project—the first long horizontal ground freezing and tunneling in China.
将人工地层冻结模型试验研究应用于工程实施中,针对我国隧道内首例长距离水平地层冻结和暗挖工程,在冻土壁温度场、地层应力、位移场等方面进行了测试,取得了和工程实测一致的规律和定量结果。
5) ground freezing technique
地层冻结技术
1.
The application of ground freezing technique to subway construction;
地层冻结技术在地铁建设中的应用
2.
Application of ground freezing technique in shield machine entering station
地层冻结技术在盾构进站中的应用
补充资料:磁冻结定理
阐述理想导电流体和磁场一起运动的规律的定理,即①开尔文定理:通过和理想导电流体一起运动的任意封闭曲线所围面积的磁感应通量守恒;②亥姆霍兹定理:在理想导电流体中,起初在某磁力线上的流体元以后一直位于此磁力线上。此两定理与涡旋在流体中运动的两条同名定理类似。
假设流体是理想导电流体(电导率σ=∞),则描述磁场变化率的方程为:
式中B为磁感应强度;v为流体速度(见磁流体力学基本方程组)。此方程和无粘性不可压缩流体的涡旋方程相似,故有上述同涡旋相对应的两条定理。
为了解磁冻结定理的实质,可考察流体最简单的运动对磁场的影响。假设在理想导电流体中有一均匀磁场B(见图),在垂直于磁场的平面上取一半径为 R的流体环г0。如果г0以径向速度vR向外膨胀,由于它切割磁力线,必然产生顺时针环向电场vRB。由于流体电阻为零,在г0中必然产生一等量逆时针环向电场E,否则将发生无穷大电流。因此,根据法拉第电磁感应定律可以算出,流体环从г0经时间dt膨胀到г 位置时,环内的磁感应通量必须减少2πRvRBdt,方可抵消流体环膨胀时切割磁力线产生的电场 vRB。这些应减少的磁感应通量正好在г环和г0环之间,所以如果从运动的流体环上看,流体环围绕的磁感应通量不变,磁力线随着流体环一起向外膨胀,即流体如同固结在磁力线上。把这种简单的流动情况推广到理想导电流体的任意流动情况,就可得到磁冻结定理中的两条定理,它们都有严格的数学证明。
1942年H.阿尔文首次提出:"理想导电流体不能作垂直于磁力线的相对流动,因此流体物质固结在磁力线上。"1960年S.戈德斯坦经过严格的论证,得到描述亥姆霍兹定理的数学形式。
参考书目
V. C. A.Ferraro and C.Plumpton,Introduction to Magneto-fluid Mechanics,Oxford Univ.Press,London,1961.
T. J. M.博伊德、J.J.桑德森著,戴世强、陆志云译:《等离子体动力学》,科学出版社,北京,1977。(T.J.M.Boyd andJ. J. Sanderson,Plasma Dynamics,Nelson,London,1969.)
假设流体是理想导电流体(电导率σ=∞),则描述磁场变化率的方程为:
式中B为磁感应强度;v为流体速度(见磁流体力学基本方程组)。此方程和无粘性不可压缩流体的涡旋方程相似,故有上述同涡旋相对应的两条定理。
为了解磁冻结定理的实质,可考察流体最简单的运动对磁场的影响。假设在理想导电流体中有一均匀磁场B(见图),在垂直于磁场的平面上取一半径为 R的流体环г0。如果г0以径向速度vR向外膨胀,由于它切割磁力线,必然产生顺时针环向电场vRB。由于流体电阻为零,在г0中必然产生一等量逆时针环向电场E,否则将发生无穷大电流。因此,根据法拉第电磁感应定律可以算出,流体环从г0经时间dt膨胀到г 位置时,环内的磁感应通量必须减少2πRvRBdt,方可抵消流体环膨胀时切割磁力线产生的电场 vRB。这些应减少的磁感应通量正好在г环和г0环之间,所以如果从运动的流体环上看,流体环围绕的磁感应通量不变,磁力线随着流体环一起向外膨胀,即流体如同固结在磁力线上。把这种简单的流动情况推广到理想导电流体的任意流动情况,就可得到磁冻结定理中的两条定理,它们都有严格的数学证明。
1942年H.阿尔文首次提出:"理想导电流体不能作垂直于磁力线的相对流动,因此流体物质固结在磁力线上。"1960年S.戈德斯坦经过严格的论证,得到描述亥姆霍兹定理的数学形式。
参考书目
V. C. A.Ferraro and C.Plumpton,Introduction to Magneto-fluid Mechanics,Oxford Univ.Press,London,1961.
T. J. M.博伊德、J.J.桑德森著,戴世强、陆志云译:《等离子体动力学》,科学出版社,北京,1977。(T.J.M.Boyd andJ. J. Sanderson,Plasma Dynamics,Nelson,London,1969.)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条