1) visual detector
视觉式检测器
2) machine vision detection
机器视觉检测
1.
A machine vision detection method for the multi-diameter with digital image processing technology was presented.
介绍了基于数字图像处理技术的阶梯轴机器视觉检测方法。
3) night vision tester
夜间视觉检测器
4) machine vision inspection
机器视觉检测
1.
Based on the local and aboard development and application of machine vision, the main contents of this study have focused on the key issues in machine vision inspection, the image measurement and visual inspection, including: planar visual metrology, surface defects detection, color texture surface grading.
我国是制造业大国,但目前产品检测仍然主要依靠人工的方式,严重制约着我国制造业的发展,机器视觉检测是我国工业现代化发展的必然趋势,对工业自动化水平的发展和提高具有重要的意义。
2.
Key technologies of dimensional inspection system of thin sheet part based on machine vision were investigated, and an entire machine vision inspection system was developed.
对薄片零件尺寸机器视觉检测系统的关键技术进行了研究,开发了一套完整的机器视觉检测系统;提出了基于CAD信息的线扫描步长自适应优化方法用于被检测零件的图像采集;提出了基于三次样条插值的矩形透镜法亚像素边缘检测方法用于边缘检测;提出了基于曲率与HOUGH变换的平面轮廓图元识别方法用于图像识别。
5) vision measurement
视觉检测
1.
New self calibration method in computer vision measurement system
一种新的视觉检测系统自标定方法
2.
An algorithm of mass-target image matching for vision measurement in mass chip production was put forward to carry out multi-window self-construction.
针对大批量芯片生产中视觉检测难题,提出了一种基于多窗体结构的多目标匹配算法,实现了多窗体结构的自构建。
6) visual inspection
视觉检测
1.
A Visual Inspection System for On-Iline Measurement;
用于在线测量的视觉检测系统
2.
Error analysis of calibration equipment in visual inspection system for industrial parts;
工业零件视觉检测系统中标定设备的误差分析
3.
The investigation of computer visual inspection in convection belt system;
传送带计算机视觉检测系统的研究
补充资料:机器视觉
计算机根据输入的二维图像来分析、理解原来三维物景的过程和技术,又称计算机视觉,是人工智能的一个重要分支。计算机视觉的实现过程是:首先将输入的图像变换为便于进一步处理的图像,称图像预处理,接着抽取图像的特征,建立图像基元,并判定图像所属的类(见模式识别);然后是理解阶段,根据事先存储的知识对输入图像本身及其所反映的物景进行描述或解释。在人工智能的早期研究中,景物分析的术语常用来强调三维物景与二维图像处理的区别(见图像分析)。
机器视觉的研究是从 20世纪 60年代中期美国学者L.R.罗伯兹关于理解多面体组成的积木世界研究开始的。当时运用的预处理、边缘检测、轮廓线构成、对象建模、匹配等技术,后来一直在机器视觉中应用。罗伯兹在图像分析过程中,采用了自底向上的方法。用边缘检测技术来确定轮廓线,用区域分析技术将图像划分为由灰度相近的像素组成的区域,这些技术统称为图像分割。其目的在于用轮廓线和区域对所分析的图像进行描述,以便同机内存储的模型进行比较匹配。实践表明,只用自底向上的分析太困难,必须同时采用自顶向下,即把目标分为若干子目标的分析方法,运用启发式知识对对象进行预测。这同言语理解中采用的自底向上和自顶向下相结合的方法是一致的。在图像理解研究中,A.古兹曼提出运用启发式知识,表明用符号过程来解释轮廓画的方法不必求助于诸如最小二乘法匹配之类的数值计算程序。
70年代,机器视觉形成几个重要研究分支:①目标制导的图像处理;②图像处理和分析的并行算法;③从二维图像提取三维信息;④序列图像分析和运动参量求值;⑤视觉知识的表示;⑥视觉系统的知识库等。
机器视觉的应用主要有检测和机器人视觉两个方面。①检测:又可分为高精度定量检测(例如显微照片的细胞分类、机械零部件的尺寸和位置测量)和不用量器的定性或半定量检测(例如产品的外观检查、装配线上的零部件识别定位、缺陷性检测与装配完全性检测)。②机器人视觉:用于指引机器人在大范围内的操作和行动,如从料斗送出的杂乱工件堆中拣取工件并按一定的方位放在传输带或其他设备上(即料斗拣取问题)。至于小范围内的操作和行动,还需要借助于触觉传感技术。
机器视觉技术比较复杂,最大的困难在于人的视觉机制尚不清楚。人可以用内省法描述对某一问题的解题过程,从而用计算机加以模拟。但尽管每一个正常人都是"视觉专家",却不可能用内省法来描述自己的视觉过程。因此建立机器视觉系统是十分困难的任务。
参考书目
D.H.Ballard and C.M.Brown, Computer Vision, Prentice-Hall Inc.,Englewood Cliffs, New Jersey,1982.
机器视觉的研究是从 20世纪 60年代中期美国学者L.R.罗伯兹关于理解多面体组成的积木世界研究开始的。当时运用的预处理、边缘检测、轮廓线构成、对象建模、匹配等技术,后来一直在机器视觉中应用。罗伯兹在图像分析过程中,采用了自底向上的方法。用边缘检测技术来确定轮廓线,用区域分析技术将图像划分为由灰度相近的像素组成的区域,这些技术统称为图像分割。其目的在于用轮廓线和区域对所分析的图像进行描述,以便同机内存储的模型进行比较匹配。实践表明,只用自底向上的分析太困难,必须同时采用自顶向下,即把目标分为若干子目标的分析方法,运用启发式知识对对象进行预测。这同言语理解中采用的自底向上和自顶向下相结合的方法是一致的。在图像理解研究中,A.古兹曼提出运用启发式知识,表明用符号过程来解释轮廓画的方法不必求助于诸如最小二乘法匹配之类的数值计算程序。
70年代,机器视觉形成几个重要研究分支:①目标制导的图像处理;②图像处理和分析的并行算法;③从二维图像提取三维信息;④序列图像分析和运动参量求值;⑤视觉知识的表示;⑥视觉系统的知识库等。
机器视觉的应用主要有检测和机器人视觉两个方面。①检测:又可分为高精度定量检测(例如显微照片的细胞分类、机械零部件的尺寸和位置测量)和不用量器的定性或半定量检测(例如产品的外观检查、装配线上的零部件识别定位、缺陷性检测与装配完全性检测)。②机器人视觉:用于指引机器人在大范围内的操作和行动,如从料斗送出的杂乱工件堆中拣取工件并按一定的方位放在传输带或其他设备上(即料斗拣取问题)。至于小范围内的操作和行动,还需要借助于触觉传感技术。
机器视觉技术比较复杂,最大的困难在于人的视觉机制尚不清楚。人可以用内省法描述对某一问题的解题过程,从而用计算机加以模拟。但尽管每一个正常人都是"视觉专家",却不可能用内省法来描述自己的视觉过程。因此建立机器视觉系统是十分困难的任务。
参考书目
D.H.Ballard and C.M.Brown, Computer Vision, Prentice-Hall Inc.,Englewood Cliffs, New Jersey,1982.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条