说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 垂直压力叶滤机
1)  vertical pressure leaf filter
垂直压力叶滤机
2)  straight-bladed darrieus-type wind turbine
直叶片垂直轴风力机
3)  vertical pressure
垂直压力
1.
Through the direct shear experiments under the conditions of different initial moisture contents,different dry densities and different vertical pressures,this paper researches the regularities of the change of the strength index of remolded silt affected by these external factors.
通过在不同初始含水率、不同干密度、不同垂直压力条件下的直剪试验,研究重塑粉土强度指标随这些外部因素的变化规律,研究表明,垂直压力、干密度的增大对提高重塑粉土峰值强度作用明显,随初始含水率增加,重塑粉土土体峰值强度的剪切位移增加,而峰值强度、黏聚力、内摩擦角都有先增大后减小的趋势。
4)  vertical earth pressure
垂直土压力
1.
Simulation on relaxation effect of vertical earth pressure for shield tunnels by particle flow code;
盾构隧道垂直土压力松动效应的颗粒流模拟
2.
Discussion on the method to calculate vertical earth pressure in buried culvert;
沟埋式涵洞垂直土压力计算方法的探讨
3.
The formulas calculating the vertical earth pressure on conduit hidden by filling with soil are derived.
采用沟谷影响系数和管顶平面上的沉降差,综合反映各方面因素对土压力的影响,提出了填埋式管道垂直土压力的计算公式,并与现有公式和试验资料作了比较。
5)  vertical water pressure
垂直水压力
1.
Starting from water pressure on radial gate,the load and uplift force wereanalysed,the calculation method for the vertical water pressure on shellow open radialgate has been simplified.
从弧形闸门水压力入手,分析了闸门的荷载及启门力,并对表孔式弧门的垂直水压力提出了简化计算方法。
6)  Vane Pressure Filter
叶片式压力过滤机
补充资料:土压力
      土体作用于挡土结构物上的侧压力。挡土结构物通常包括边坡挡土墙、桥台、码头板桩墙和基坑护壁墙,等等。研究土压力主要是研究挡土结构物所受土压力的大小和分布规律,并据以确定挡土结构物的形式和尺寸。土压力是土力学研究的一项内容。
  
  挡土结构物承受土压力的大小取决于挡土结构物的移动方向和位移量;土压力的分布则取决于挡土结构物的柔性变形和施工程序。
  
  主动土压力和被动土压力  土压力分为主动土压力和被动土压力。图所示为一刚性挡土墙,墙高为H,墙背AB的倾斜角为α,填土顶面坡度为β,填料为砂土,其单位重为γ,内摩擦角为ψ,墙背摩擦角为δ。若墙背AB在土压力作用下向左移动,使土体的侧压力减小而发生破坏,破坏时产生一个外于极限平衡状态的滑动土楔体ABC,此时墙背所受的土压力称为主动土压力Ea(图之a)。反之,如果墙背AB在外力作用下向右移动,并使土体的侧压力增大而发生破坏,也产生一个处于极限平衡状态的滑动土楔体ABC,而墙背所受的土压力称为被动土压力Ep(图之b)。如图上所示,被动土压力大于主动土压力。土体破裂面BC一般呈曲线状。为了简化计算,C.-A.de库仑假设破裂面为直线,并据此导出下列计算土压力公式:
  
  
  
    式中γ为土的容量;Ka和Kp分别为主动土压力系数和被动土压力系数:
  
  
  如果墙壁垂直且光滑, 填土表面为水平, 即α=90°,β=δ=0,式(3)、(4)变为:
  
  
  
   ,
  
  
   (5)
  
  
  
   。
  
  
   (6)这种情况称为兰金状态。上述库仑和兰金理论均假定土压力的分布规律为三角形,其合力作用点在墙背高度的1/3处。
  
  苏联В.В.索科洛夫斯基用极限平衡理论求出具有任何填土表面的倾斜挡土墙土压力的精确解答,他求得的滑动破裂线都是对数螺旋曲线。对于墙后有水平填土表面的垂直刚性挡土墙,用库仑和兰金理论所得的结果与索科洛夫斯基的精确解答大致有如下关系:
  ER=1.24EK
  
  
  
  
  
  EC=0.98EK,式中ER为按兰金理论计算的结果;EC为按库仑理论计算的结果;EK为按精确方法计算的结果。由此可知,确定挡土墙主动土压力时,用库仑理论能得出足够精确的结果。但据一些学者的实验研究,用库仑理论确定被动土压力,误差较大,而且这个误差还随着土的内摩擦角的增大而增大。
  
  确定土压力还有图解分析法和图解法。图解分析法是用作图确定近似于滑动线的精确曲线,然后确定滑落棱体各部分的重量,借助力的三角形,求出土压力的数值。图解法是以库仑假设为基础,即假设滑动线为直线,此法一般仅适用于确定主动土压力,结果同精确解相近。确定被动土压力则必须采用图解分析法。图解法和图解分析法的优点在于能自行核对,避免较大误差,可以用简便的作图方法计算复杂条件下的土压力。
  
  影响土压力的因素  库仑和兰金理论虽已得到广泛应用,但土压力实际上受许多因素的影响,很难精确计算。如挡土结构物的柔度和施工程序就能影响土压力的分布,柔性挡土墙上的土压力往往不呈三角形分布,而是随挡土墙的柔性情况呈各种曲线分布,其土压力总值也与按库仑或兰金理论计算出的有所差别。施工过程中填土的密实度以及完工后的沉陷,能增大土压力,尤其是粘性土的流变作用会导致土压力随时间而增大。至于车辆的动力、温度和湿度变化对土压力的影响将更为复杂。因此,目前尚无简易而可靠的土压力计算方法。工程中常采用在库仑理论基础上加大安全系数的办法来预防可能出现的各种不利的后果。对于重要的挡土结构物,则须用专门办法来确定土压力。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条